# Copyright (c) OpenMMLab. All rights reserved. from mmseg.datasets.basesegdataset import BaseSegDataset from mmseg.registry import DATASETS # 注册数据集类 @DATASETS.register_module() class GID_Dataset(BaseSegDataset): """Gaofen Image Dataset (GID) Dataset paper link: https://www.sciencedirect.com/science/article/pii/S0034425719303414 https://x-ytong.github.io/project/GID.html GID 6 classes: others, built-up, farmland, forest, meadow, water In this example, select 15 images from GID dataset as training set, and select 5 images as validation set. The selected images are listed as follows: GF2_PMS1__L1A0000647767-MSS1 GF2_PMS1__L1A0001064454-MSS1 GF2_PMS1__L1A0001348919-MSS1 GF2_PMS1__L1A0001680851-MSS1 GF2_PMS1__L1A0001680853-MSS1 GF2_PMS1__L1A0001680857-MSS1 GF2_PMS1__L1A0001757429-MSS1 GF2_PMS2__L1A0000607681-MSS2 GF2_PMS2__L1A0000635115-MSS2 GF2_PMS2__L1A0000658637-MSS2 GF2_PMS2__L1A0001206072-MSS2 GF2_PMS2__L1A0001471436-MSS2 GF2_PMS2__L1A0001642620-MSS2 GF2_PMS2__L1A0001787089-MSS2 GF2_PMS2__L1A0001838560-MSS2 The ``img_suffix`` is fixed to '.tif' and ``seg_map_suffix`` is fixed to '.tif' for GID. """ METAINFO = dict( classes=('Others', 'Built-up', 'Farmland', 'Forest', 'Meadow', 'Water'), palette=[[0, 0, 0], [255, 0, 0], [0, 255, 0], [0, 255, 255], [255, 255, 0], [0, 0, 255]]) def __init__(self, img_suffix='.png', seg_map_suffix='.png', reduce_zero_label=None, **kwargs) -> None: super().__init__( img_suffix=img_suffix, seg_map_suffix=seg_map_suffix, reduce_zero_label=reduce_zero_label, **kwargs)