_base_ = [ '../_base_/models/cgnet.py', '../_base_/datasets/cityscapes.py', '../_base_/default_runtime.py' ] # optimizer optimizer = dict(type='Adam', lr=0.001, eps=1e-08, weight_decay=0.0005) optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer) # learning policy param_scheduler = [ dict( type='PolyLR', eta_min=1e-4, power=0.9, by_epoch=False, begin=0, end=60000) ] # runtime settings total_iters = 60000 train_cfg = dict( type='IterBasedTrainLoop', max_iters=total_iters, val_interval=4000) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') default_hooks = dict(checkpoint=dict(by_epoch=False, interval=4000)) crop_size = (512, 1024) preprocess_cfg = dict(size=crop_size) model = dict(preprocess_cfg=preprocess_cfg) train_dataloader = dict(batch_size=8) val_dataloader = dict(batch_size=1) test_dataloader = val_dataloader