Collections: - Name: GCNet Metadata: Training Data: - Cityscapes - Pascal VOC 2012 + Aug - ADE20K Models: - Name: gcnet_r50-d8_512x1024_40k_cityscapes In Collection: GCNet Metadata: inference time (ms/im): - value: 254.45 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.69 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436-4b0fd17b.pth Config: configs/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes.py - Name: gcnet_r101-d8_512x1024_40k_cityscapes In Collection: GCNet Metadata: inference time (ms/im): - value: 383.14 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.28 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436-5e62567f.pth Config: configs/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes.py - Name: gcnet_r50-d8_769x769_40k_cityscapes In Collection: GCNet Metadata: inference time (ms/im): - value: 598.8 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.12 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814-a26f4471.pth Config: configs/gcnet/gcnet_r50-d8_769x769_40k_cityscapes.py - Name: gcnet_r101-d8_769x769_40k_cityscapes In Collection: GCNet Metadata: inference time (ms/im): - value: 884.96 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.95 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550-ca4f0a84.pth Config: configs/gcnet/gcnet_r101-d8_769x769_40k_cityscapes.py - Name: gcnet_r50-d8_512x1024_80k_cityscapes In Collection: GCNet Metadata: inference time (ms/im): - value: 254.45 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.48 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450-ef8f069b.pth Config: configs/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes.py - Name: gcnet_r101-d8_512x1024_80k_cityscapes In Collection: GCNet Metadata: inference time (ms/im): - value: 383.14 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.03 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450-778ebf69.pth Config: configs/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes.py - Name: gcnet_r50-d8_769x769_80k_cityscapes In Collection: GCNet Metadata: inference time (ms/im): - value: 598.8 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.68 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516-4839565b.pth Config: configs/gcnet/gcnet_r50-d8_769x769_80k_cityscapes.py - Name: gcnet_r101-d8_769x769_80k_cityscapes In Collection: GCNet Metadata: inference time (ms/im): - value: 884.96 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.18 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628-8e043423.pth Config: configs/gcnet/gcnet_r101-d8_769x769_80k_cityscapes.py - Name: gcnet_r50-d8_512x512_80k_ade20k In Collection: GCNet Metadata: inference time (ms/im): - value: 42.77 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 41.47 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146-91a6da41.pth Config: configs/gcnet/gcnet_r50-d8_512x512_80k_ade20k.py - Name: gcnet_r101-d8_512x512_80k_ade20k In Collection: GCNet Metadata: inference time (ms/im): - value: 65.79 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.82 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811-c3fcb6dd.pth Config: configs/gcnet/gcnet_r101-d8_512x512_80k_ade20k.py - Name: gcnet_r50-d8_512x512_160k_ade20k In Collection: GCNet Metadata: inference time (ms/im): - value: 42.77 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.37 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122-d95f3e1f.pth Config: configs/gcnet/gcnet_r50-d8_512x512_160k_ade20k.py - Name: gcnet_r101-d8_512x512_160k_ade20k In Collection: GCNet Metadata: inference time (ms/im): - value: 65.79 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.69 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406-615528d7.pth Config: configs/gcnet/gcnet_r101-d8_512x512_160k_ade20k.py - Name: gcnet_r50-d8_512x512_20k_voc12aug In Collection: GCNet Metadata: inference time (ms/im): - value: 42.83 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.42 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701-3cbfdab1.pth Config: configs/gcnet/gcnet_r50-d8_512x512_20k_voc12aug.py - Name: gcnet_r101-d8_512x512_20k_voc12aug In Collection: GCNet Metadata: inference time (ms/im): - value: 67.57 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.41 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713-6c720aa9.pth Config: configs/gcnet/gcnet_r101-d8_512x512_20k_voc12aug.py - Name: gcnet_r50-d8_512x512_40k_voc12aug In Collection: GCNet Metadata: inference time (ms/im): - value: 42.83 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.24 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105-9797336d.pth Config: configs/gcnet/gcnet_r50-d8_512x512_40k_voc12aug.py - Name: gcnet_r101-d8_512x512_40k_voc12aug In Collection: GCNet Metadata: inference time (ms/im): - value: 67.57 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.84 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806-1e38208d.pth Config: configs/gcnet/gcnet_r101-d8_512x512_40k_voc12aug.py