## Changelog ### V0.16 (08/04/2021) **Highlights** - Support PyTorch 1.9 - Support SegFormer backbone MiT - Support md2yml pre-commit hook - Support frozen stage for HRNet **New Features** - Support SegFormer backbone MiT ([#594](https://github.com/open-mmlab/mmsegmentation/pull/594)) - Support md2yml pre-commit hook ([#732](https://github.com/open-mmlab/mmsegmentation/pull/732)) - Support mim ([#717](https://github.com/open-mmlab/mmsegmentation/pull/717)) - Add mmseg2torchserve tool ([#552](https://github.com/open-mmlab/mmsegmentation/pull/552)) **Improvements** - Support hrnet frozen stage ([#743](https://github.com/open-mmlab/mmsegmentation/pull/743)) - Add template of reimplementation questions ([#741](https://github.com/open-mmlab/mmsegmentation/pull/741)) - Output pdf and epub formats for readthedocs ([#742](https://github.com/open-mmlab/mmsegmentation/pull/742)) - Refine the docstring of ResNet ([#723](https://github.com/open-mmlab/mmsegmentation/pull/723)) - Replace interpolate with resize ([#731](https://github.com/open-mmlab/mmsegmentation/pull/731)) - Update resource limit ([#700](https://github.com/open-mmlab/mmsegmentation/pull/700)) - Update config.md ([#678](https://github.com/open-mmlab/mmsegmentation/pull/678)) **Bug Fixes** - Fix ATTENTION registry ([#729](https://github.com/open-mmlab/mmsegmentation/pull/729)) - Fix analyze log script ([#716](https://github.com/open-mmlab/mmsegmentation/pull/716)) - Fix doc api display ([#725](https://github.com/open-mmlab/mmsegmentation/pull/725)) - Fix patch_embed and pos_embed mismatch error ([#685](https://github.com/open-mmlab/mmsegmentation/pull/685)) - Fix efficient test for multi-node ([#707](https://github.com/open-mmlab/mmsegmentation/pull/707)) - Fix init_cfg in resnet backbone ([#697](https://github.com/open-mmlab/mmsegmentation/pull/697)) - Fix efficient test bug ([#702](https://github.com/open-mmlab/mmsegmentation/pull/702)) - Fix url error in config docs ([#680](https://github.com/open-mmlab/mmsegmentation/pull/680)) - Fix mmcv installation ([#676](https://github.com/open-mmlab/mmsegmentation/pull/676)) - Fix torch version ([#670](https://github.com/open-mmlab/mmsegmentation/pull/670)) **Contributors** @sshuair @xiexinch @Junjun2016 @mmeendez8 @xvjiarui @sennnnn @puhsu @BIGWangYuDong @keke1u @daavoo ### V0.15 (07/04/2021) **Highlights** - Support ViT, SETR, and Swin-Transformer - Add Chinese documentation - Unified parameter initialization **Bug Fixes** - Fix typo and links ([#608](https://github.com/open-mmlab/mmsegmentation/pull/608)) - Fix Dockerfile ([#607](https://github.com/open-mmlab/mmsegmentation/pull/607)) - Fix ViT init ([#609](https://github.com/open-mmlab/mmsegmentation/pull/609)) - Fix mmcv version compatible table ([#658](https://github.com/open-mmlab/mmsegmentation/pull/658)) - Fix model links of DMNEt ([#660](https://github.com/open-mmlab/mmsegmentation/pull/660)) **New Features** - Support loading DeiT weights ([#538](https://github.com/open-mmlab/mmsegmentation/pull/538)) - Support SETR ([#531](https://github.com/open-mmlab/mmsegmentation/pull/531), [#635](https://github.com/open-mmlab/mmsegmentation/pull/635)) - Add config and models for ViT backbone with UperHead ([#520](https://github.com/open-mmlab/mmsegmentation/pull/531), [#635](https://github.com/open-mmlab/mmsegmentation/pull/520)) - Support Swin-Transformer ([#511](https://github.com/open-mmlab/mmsegmentation/pull/511)) - Add higher accuracy FastSCNN ([#606](https://github.com/open-mmlab/mmsegmentation/pull/606)) - Add Chinese documentation ([#666](https://github.com/open-mmlab/mmsegmentation/pull/666)) **Improvements** - Unified parameter initialization ([#567](https://github.com/open-mmlab/mmsegmentation/pull/567)) - Separate CUDA and CPU in github action CI ([#602](https://github.com/open-mmlab/mmsegmentation/pull/602)) - Support persistent dataloader worker ([#646](https://github.com/open-mmlab/mmsegmentation/pull/646)) - Update meta file fields ([#661](https://github.com/open-mmlab/mmsegmentation/pull/661), [#664](https://github.com/open-mmlab/mmsegmentation/pull/664)) ### V0.14 (06/02/2021) **Highlights** - Support ONNX to TensorRT - Support MIM **Bug Fixes** - Fix ONNX to TensorRT verify ([#547](https://github.com/open-mmlab/mmsegmentation/pull/547)) - Fix save best for EvalHook ([#575](https://github.com/open-mmlab/mmsegmentation/pull/575)) **New Features** - Support loading DeiT weights ([#538](https://github.com/open-mmlab/mmsegmentation/pull/538)) - Support ONNX to TensorRT ([#542](https://github.com/open-mmlab/mmsegmentation/pull/542)) - Support output results for ADE20k ([#544](https://github.com/open-mmlab/mmsegmentation/pull/544)) - Support MIM ([#549](https://github.com/open-mmlab/mmsegmentation/pull/549)) **Improvements** - Add option for ViT output shape ([#530](https://github.com/open-mmlab/mmsegmentation/pull/530)) - Infer batch size using len(result) ([#532](https://github.com/open-mmlab/mmsegmentation/pull/532)) - Add compatible table between MMSeg and MMCV ([#558](https://github.com/open-mmlab/mmsegmentation/pull/558)) ### V0.13 (05/05/2021) **Highlights** - Support Pascal Context Class-59 dataset. - Support Visual Transformer Backbone. - Support mFscore metric. **Bug Fixes** - Fixed Colaboratory tutorial ([#451](https://github.com/open-mmlab/mmsegmentation/pull/451)) - Fixed mIoU calculation range ([#471](https://github.com/open-mmlab/mmsegmentation/pull/471)) - Fixed sem_fpn, unet README.md ([#492](https://github.com/open-mmlab/mmsegmentation/pull/492)) - Fixed `num_classes` in FCN for Pascal Context 60-class dataset ([#488](https://github.com/open-mmlab/mmsegmentation/pull/488)) - Fixed FP16 inference ([#497](https://github.com/open-mmlab/mmsegmentation/pull/497)) **New Features** - Support dynamic export and visualize to pytorch2onnx ([#463](https://github.com/open-mmlab/mmsegmentation/pull/463)) - Support export to torchscript ([#469](https://github.com/open-mmlab/mmsegmentation/pull/469), [#499](https://github.com/open-mmlab/mmsegmentation/pull/499)) - Support Pascal Context Class-59 dataset ([#459](https://github.com/open-mmlab/mmsegmentation/pull/459)) - Support Visual Transformer backbone ([#465](https://github.com/open-mmlab/mmsegmentation/pull/465)) - Support UpSample Neck ([#512](https://github.com/open-mmlab/mmsegmentation/pull/512)) - Support mFscore metric ([#509](https://github.com/open-mmlab/mmsegmentation/pull/509)) **Improvements** - Add more CI for PyTorch ([#460](https://github.com/open-mmlab/mmsegmentation/pull/460)) - Add print model graph args for tools/print_config.py ([#451](https://github.com/open-mmlab/mmsegmentation/pull/451)) - Add cfg links in modelzoo README.md ([#468](https://github.com/open-mmlab/mmsegmentation/pull/469)) - Add BaseSegmentor import to segmentors/__init__.py ([#495](https://github.com/open-mmlab/mmsegmentation/pull/495)) - Add MMOCR, MMGeneration links ([#501](https://github.com/open-mmlab/mmsegmentation/pull/501), [#506](https://github.com/open-mmlab/mmsegmentation/pull/506)) - Add Chinese QR code ([#506](https://github.com/open-mmlab/mmsegmentation/pull/506)) - Use MMCV MODEL_REGISTRY ([#515](https://github.com/open-mmlab/mmsegmentation/pull/515)) - Add ONNX testing tools ([#498](https://github.com/open-mmlab/mmsegmentation/pull/498)) - Replace data_dict calling 'img' key to support MMDet3D ([#514](https://github.com/open-mmlab/mmsegmentation/pull/514)) - Support reading class_weight from file in loss function ([#513](https://github.com/open-mmlab/mmsegmentation/pull/513)) - Make tags as comment ([#505](https://github.com/open-mmlab/mmsegmentation/pull/505)) - Use MMCV EvalHook ([#438](https://github.com/open-mmlab/mmsegmentation/pull/438)) ### V0.12 (04/03/2021) **Highlights** - Support FCN-Dilate 6 model. - Support Dice Loss. **Bug Fixes** - Fixed PhotoMetricDistortion Doc ([#388](https://github.com/open-mmlab/mmsegmentation/pull/388)) - Fixed install scripts ([#399](https://github.com/open-mmlab/mmsegmentation/pull/399)) - Fixed Dice Loss multi-class ([#417](https://github.com/open-mmlab/mmsegmentation/pull/417)) **New Features** - Support Dice Loss ([#396](https://github.com/open-mmlab/mmsegmentation/pull/396)) - Add plot logs tool ([#426](https://github.com/open-mmlab/mmsegmentation/pull/426)) - Add opacity option to show_result ([#425](https://github.com/open-mmlab/mmsegmentation/pull/425)) - Speed up mIoU metric ([#430](https://github.com/open-mmlab/mmsegmentation/pull/430)) **Improvements** - Refactor unittest file structure ([#440](https://github.com/open-mmlab/mmsegmentation/pull/440)) - Fix typos in the repo ([#449](https://github.com/open-mmlab/mmsegmentation/pull/449)) - Include class-level metrics in the log ([#445](https://github.com/open-mmlab/mmsegmentation/pull/445)) ### V0.11 (02/02/2021) **Highlights** - Support memory efficient test, add more UNet models. **Bug Fixes** - Fixed TTA resize scale ([#334](https://github.com/open-mmlab/mmsegmentation/pull/334)) - Fixed CI for pip 20.3 ([#307](https://github.com/open-mmlab/mmsegmentation/pull/307)) - Fixed ADE20k test ([#359](https://github.com/open-mmlab/mmsegmentation/pull/359)) **New Features** - Support memory efficient test ([#330](https://github.com/open-mmlab/mmsegmentation/pull/330)) - Add more UNet benchmarks ([#324](https://github.com/open-mmlab/mmsegmentation/pull/324)) - Support Lovasz Loss ([#351](https://github.com/open-mmlab/mmsegmentation/pull/351)) **Improvements** - Move train_cfg/test_cfg inside model ([#341](https://github.com/open-mmlab/mmsegmentation/pull/341)) ### V0.10 (01/01/2021) **Highlights** - Support MobileNetV3, DMNet, APCNet. Add models of ResNet18V1b, ResNet18V1c, ResNet50V1b. **Bug Fixes** - Fixed CPU TTA ([#276](https://github.com/open-mmlab/mmsegmentation/pull/276)) - Fixed CI for pip 20.3 ([#307](https://github.com/open-mmlab/mmsegmentation/pull/307)) **New Features** - Add ResNet18V1b, ResNet18V1c, ResNet50V1b, ResNet101V1b models ([#316](https://github.com/open-mmlab/mmsegmentation/pull/316)) - Support MobileNetV3 ([#268](https://github.com/open-mmlab/mmsegmentation/pull/268)) - Add 4 retinal vessel segmentation benchmark ([#315](https://github.com/open-mmlab/mmsegmentation/pull/315)) - Support DMNet ([#313](https://github.com/open-mmlab/mmsegmentation/pull/313)) - Support APCNet ([#299](https://github.com/open-mmlab/mmsegmentation/pull/299)) **Improvements** - Refactor Documentation page ([#311](https://github.com/open-mmlab/mmsegmentation/pull/311)) - Support resize data augmentation according to original image size ([#291](https://github.com/open-mmlab/mmsegmentation/pull/291)) ### V0.9 (30/11/2020) **Highlights** - Support 4 medical dataset, UNet and CGNet. **New Features** - Support RandomRotate transform ([#215](https://github.com/open-mmlab/mmsegmentation/pull/215), [#260](https://github.com/open-mmlab/mmsegmentation/pull/260)) - Support RGB2Gray transform ([#227](https://github.com/open-mmlab/mmsegmentation/pull/227)) - Support Rerange transform ([#228](https://github.com/open-mmlab/mmsegmentation/pull/228)) - Support ignore_index for BCE loss ([#210](https://github.com/open-mmlab/mmsegmentation/pull/210)) - Add modelzoo statistics ([#263](https://github.com/open-mmlab/mmsegmentation/pull/263)) - Support Dice evaluation metric ([#225](https://github.com/open-mmlab/mmsegmentation/pull/225)) - Support Adjust Gamma transform ([#232](https://github.com/open-mmlab/mmsegmentation/pull/232)) - Support CLAHE transform ([#229](https://github.com/open-mmlab/mmsegmentation/pull/229)) **Bug Fixes** - Fixed detail API link ([#267](https://github.com/open-mmlab/mmsegmentation/pull/267)) ### V0.8 (03/11/2020) **Highlights** - Support 4 medical dataset, UNet and CGNet. **New Features** - Support customize runner ([#118](https://github.com/open-mmlab/mmsegmentation/pull/118)) - Support UNet ([#161](https://github.com/open-mmlab/mmsegmentation/pull/162)) - Support CHASE_DB1, DRIVE, STARE, HRD ([#203](https://github.com/open-mmlab/mmsegmentation/pull/203)) - Support CGNet ([#223](https://github.com/open-mmlab/mmsegmentation/pull/223)) ### V0.7 (07/10/2020) **Highlights** - Support Pascal Context dataset and customizing class dataset. **Bug Fixes** - Fixed CPU inference ([#153](https://github.com/open-mmlab/mmsegmentation/pull/153)) **New Features** - Add DeepLab OS16 models ([#154](https://github.com/open-mmlab/mmsegmentation/pull/154)) - Support Pascal Context dataset ([#133](https://github.com/open-mmlab/mmsegmentation/pull/133)) - Support customizing dataset classes ([#71](https://github.com/open-mmlab/mmsegmentation/pull/71)) - Support customizing dataset palette ([#157](https://github.com/open-mmlab/mmsegmentation/pull/157)) **Improvements** - Support 4D tensor output in ONNX ([#150](https://github.com/open-mmlab/mmsegmentation/pull/150)) - Remove redundancies in ONNX export ([#160](https://github.com/open-mmlab/mmsegmentation/pull/160)) - Migrate to MMCV DepthwiseSeparableConv ([#158](https://github.com/open-mmlab/mmsegmentation/pull/158)) - Migrate to MMCV collect_env ([#137](https://github.com/open-mmlab/mmsegmentation/pull/137)) - Use img_prefix and seg_prefix for loading ([#153](https://github.com/open-mmlab/mmsegmentation/pull/153)) ### V0.6 (10/09/2020) **Highlights** - Support new methods i.e. MobileNetV2, EMANet, DNL, PointRend, Semantic FPN, Fast-SCNN, ResNeSt. **Bug Fixes** - Fixed sliding inference ONNX export ([#90](https://github.com/open-mmlab/mmsegmentation/pull/90)) **New Features** - Support MobileNet v2 ([#86](https://github.com/open-mmlab/mmsegmentation/pull/86)) - Support EMANet ([#34](https://github.com/open-mmlab/mmsegmentation/pull/34)) - Support DNL ([#37](https://github.com/open-mmlab/mmsegmentation/pull/37)) - Support PointRend ([#109](https://github.com/open-mmlab/mmsegmentation/pull/109)) - Support Semantic FPN ([#94](https://github.com/open-mmlab/mmsegmentation/pull/94)) - Support Fast-SCNN ([#58](https://github.com/open-mmlab/mmsegmentation/pull/58)) - Support ResNeSt backbone ([#47](https://github.com/open-mmlab/mmsegmentation/pull/47)) - Support ONNX export (experimental) ([#12](https://github.com/open-mmlab/mmsegmentation/pull/12)) **Improvements** - Support Upsample in ONNX ([#100](https://github.com/open-mmlab/mmsegmentation/pull/100)) - Support Windows install (experimental) ([#75](https://github.com/open-mmlab/mmsegmentation/pull/75)) - Add more OCRNet results ([#20](https://github.com/open-mmlab/mmsegmentation/pull/20)) - Add PyTorch 1.6 CI ([#64](https://github.com/open-mmlab/mmsegmentation/pull/64)) - Get version and githash automatically ([#55](https://github.com/open-mmlab/mmsegmentation/pull/55)) ### v0.5.1 (11/08/2020) **Highlights** - Support FP16 and more generalized OHEM **Bug Fixes** - Fixed Pascal VOC conversion script (#19) - Fixed OHEM weight assign bug (#54) - Fixed palette type when palette is not given (#27) **New Features** - Support FP16 (#21) - Generalized OHEM (#54) **Improvements** - Add load-from flag (#33) - Fixed training tricks doc about different learning rates of model (#26)