Collections: - Name: mobilenet_v2 Metadata: Training Data: - Cityscapes - ADE20k Paper: URL: https://arxiv.org/abs/1801.04381 Title: 'MobileNetV2: Inverted Residuals and Linear Bottlenecks' README: configs/mobilenet_v2/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mobilenet_v2.py#L14 Version: v0.17.0 Converted From: Code: https://github.com/tensorflow/models/tree/master/research/deeplab Models: - Name: fcn_m-v2-d8_512x1024_80k_cityscapes In Collection: mobilenet_v2 Metadata: backbone: M-V2-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 70.42 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) memory (GB): 3.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 61.54 Config: configs/mobilenet_v2/fcn_m-v2-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x1024_80k_cityscapes/fcn_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-d24c28c1.pth - Name: pspnet_m-v2-d8_512x1024_80k_cityscapes In Collection: mobilenet_v2 Metadata: backbone: M-V2-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 89.29 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) memory (GB): 3.6 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 70.23 Config: configs/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-19e81d51.pth - Name: deeplabv3_m-v2-d8_512x1024_80k_cityscapes In Collection: mobilenet_v2 Metadata: backbone: M-V2-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 119.05 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) memory (GB): 3.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 73.84 Config: configs/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-bef03590.pth - Name: deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes In Collection: mobilenet_v2 Metadata: backbone: M-V2-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 119.05 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) memory (GB): 5.1 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 75.2 Config: configs/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-d256dd4b.pth - Name: fcn_m-v2-d8_512x512_160k_ade20k In Collection: mobilenet_v2 Metadata: backbone: M-V2-D8 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 15.53 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) memory (GB): 6.5 Results: - Task: Semantic Segmentation Dataset: ADE20k Metrics: mIoU: 19.71 Config: configs/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k/fcn_m-v2-d8_512x512_160k_ade20k_20200825_214953-c40e1095.pth - Name: pspnet_m-v2-d8_512x512_160k_ade20k In Collection: mobilenet_v2 Metadata: backbone: M-V2-D8 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 17.33 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) memory (GB): 6.5 Results: - Task: Semantic Segmentation Dataset: ADE20k Metrics: mIoU: 29.68 Config: configs/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k/pspnet_m-v2-d8_512x512_160k_ade20k_20200825_214953-f5942f7a.pth - Name: deeplabv3_m-v2-d8_512x512_160k_ade20k In Collection: mobilenet_v2 Metadata: backbone: M-V2-D8 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 25.06 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) memory (GB): 6.8 Results: - Task: Semantic Segmentation Dataset: ADE20k Metrics: mIoU: 34.08 Config: configs/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k/deeplabv3_m-v2-d8_512x512_160k_ade20k_20200825_223255-63986343.pth - Name: deeplabv3plus_m-v2-d8_512x512_160k_ade20k In Collection: mobilenet_v2 Metadata: backbone: M-V2-D8 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 23.2 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) memory (GB): 8.2 Results: - Task: Semantic Segmentation Dataset: ADE20k Metrics: mIoU: 34.02 Config: configs/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k/deeplabv3plus_m-v2-d8_512x512_160k_ade20k_20200825_223255-465a01d4.pth