dataset_type = 'FaceOccluded' data_root = 'data/occlusion-aware-dataset' crop_size = (512, 512) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(512, 512)), dict(type='RandomFlip', prob=0.5), dict(type='RandomRotate', degree=(-30, 30), prob=0.5), dict(type='PhotoMetricDistortion'), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(512, 512), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='ResizeToMultiple', size_divisor=32), dict(type='RandomFlip'), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] dataset_train_A = dict( type='FaceOccluded', data_root=data_root, img_dir='CelebAMask-HQ-original/image', ann_dir='CelebAMask-HQ-original/mask_edited', split='CelebAMask-HQ-original/split/train_ori.txt', pipeline=train_pipeline) dataset_train_B = dict( type='FaceOccluded', data_root=data_root, img_dir='NatOcc-SOT/image', ann_dir='NatOcc-SOT/mask', split='NatOcc-SOT/split/train.txt', pipeline=train_pipeline) dataset_valid = dict( type='FaceOccluded', data_root=data_root, img_dir='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/image', ann_dir='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/mask', split='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/split/val.txt', pipeline=test_pipeline) dataset_test = dict( type='FaceOccluded', data_root=data_root, img_dir='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/image', ann_dir='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/mask', split='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/test.txt', pipeline=test_pipeline) data = dict( samples_per_gpu=2, workers_per_gpu=2, train=[ dataset_train_A,dataset_train_B, ], val= dataset_valid, test=dataset_test)