Collections: - Metadata: Training Data: - Cityscapes Name: fp16 Models: - Config: configs/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes.py In Collection: fp16 Metadata: backbone: R-101-D8 crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 115.74 lr schd: 80000 memory (GB): 5.37 Name: fcn_r101-d8_512x1024_80k_fp16_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 76.8 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes/fcn_r101-d8_512x1024_80k_fp16_cityscapes-50245227.pth - Config: configs/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes.py In Collection: fp16 Metadata: backbone: R-101-D8 crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 114.03 lr schd: 80000 memory (GB): 5.34 Name: pspnet_r101-d8_512x1024_80k_fp16_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 79.46 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes/pspnet_r101-d8_512x1024_80k_fp16_cityscapes-ade37931.pth - Config: configs/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes.py In Collection: fp16 Metadata: backbone: R-101-D8 crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 259.07 lr schd: 80000 memory (GB): 5.75 Name: deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 80.48 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes-bc86dc84.pth - Config: configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py In Collection: fp16 Metadata: backbone: R-101-D8 crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 127.06 lr schd: 80000 memory (GB): 6.35 Name: deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 80.46 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes-cc58bc8d.pth