Collections: - Name: sem_fpn Metadata: Training Data: - Cityscapes - ADE20K Paper: URL: https://arxiv.org/abs/1901.02446 Title: Panoptic Feature Pyramid Networks README: configs/sem_fpn/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fpn_head.py#L12 Version: v0.17.0 Converted From: Code: https://github.com/facebookresearch/detectron2 Models: - Name: fpn_r50_512x1024_80k_cityscapes In Collection: sem_fpn Metadata: backbone: R-50 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 73.86 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 2.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 74.52 mIoU(ms+flip): 76.08 Config: configs/sem_fpn/fpn_r50_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes_20200717_021437-94018a0d.pth - Name: fpn_r101_512x1024_80k_cityscapes In Collection: sem_fpn Metadata: backbone: R-101 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 97.18 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 3.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 75.8 mIoU(ms+flip): 77.4 Config: configs/sem_fpn/fpn_r101_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes_20200717_012416-c5800d4c.pth - Name: fpn_r50_512x512_160k_ade20k In Collection: sem_fpn Metadata: backbone: R-50 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 17.93 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 4.9 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 37.49 mIoU(ms+flip): 39.09 Config: configs/sem_fpn/fpn_r50_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k_20200718_131734-5b5a6ab9.pth - Name: fpn_r101_512x512_160k_ade20k In Collection: sem_fpn Metadata: backbone: R-101 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 24.64 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 5.9 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 39.35 mIoU(ms+flip): 40.72 Config: configs/sem_fpn/fpn_r101_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k_20200718_131734-306b5004.pth