# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmseg.models.backbones import TIMMBackbone from .utils import check_norm_state def test_timm_backbone(): with pytest.raises(TypeError): # pretrained must be a string path model = TIMMBackbone() model.init_weights(pretrained=0) # Test different norm_layer, can be: 'SyncBN', 'BN2d', 'GN', 'LN', 'IN' # Test resnet18 from timm, norm_layer='BN2d' model = TIMMBackbone( model_name='resnet18', features_only=True, pretrained=False, output_stride=32, norm_layer='BN2d') # Test resnet18 from timm, norm_layer='SyncBN' model = TIMMBackbone( model_name='resnet18', features_only=True, pretrained=False, output_stride=32, norm_layer='SyncBN') # Test resnet18 from timm, features_only=True, output_stride=32 model = TIMMBackbone( model_name='resnet18', features_only=True, pretrained=False, output_stride=32) model.init_weights() model.train() assert check_norm_state(model.modules(), True) imgs = torch.randn(1, 3, 224, 224) feats = model(imgs) feats = [feat.shape for feat in feats] assert len(feats) == 5 assert feats[0] == torch.Size((1, 64, 112, 112)) assert feats[1] == torch.Size((1, 64, 56, 56)) assert feats[2] == torch.Size((1, 128, 28, 28)) assert feats[3] == torch.Size((1, 256, 14, 14)) assert feats[4] == torch.Size((1, 512, 7, 7)) # Test resnet18 from timm, features_only=True, output_stride=16 model = TIMMBackbone( model_name='resnet18', features_only=True, pretrained=False, output_stride=16) imgs = torch.randn(1, 3, 224, 224) feats = model(imgs) feats = [feat.shape for feat in feats] assert len(feats) == 5 assert feats[0] == torch.Size((1, 64, 112, 112)) assert feats[1] == torch.Size((1, 64, 56, 56)) assert feats[2] == torch.Size((1, 128, 28, 28)) assert feats[3] == torch.Size((1, 256, 14, 14)) assert feats[4] == torch.Size((1, 512, 14, 14)) # Test resnet18 from timm, features_only=True, output_stride=8 model = TIMMBackbone( model_name='resnet18', features_only=True, pretrained=False, output_stride=8) imgs = torch.randn(1, 3, 224, 224) feats = model(imgs) feats = [feat.shape for feat in feats] assert len(feats) == 5 assert feats[0] == torch.Size((1, 64, 112, 112)) assert feats[1] == torch.Size((1, 64, 56, 56)) assert feats[2] == torch.Size((1, 128, 28, 28)) assert feats[3] == torch.Size((1, 256, 28, 28)) assert feats[4] == torch.Size((1, 512, 28, 28)) # Test efficientnet_b1 with pretrained weights model = TIMMBackbone(model_name='efficientnet_b1', pretrained=True) # Test resnetv2_50x1_bitm from timm, features_only=True, output_stride=8 model = TIMMBackbone( model_name='resnetv2_50x1_bitm', features_only=True, pretrained=False, output_stride=8) imgs = torch.randn(1, 3, 8, 8) feats = model(imgs) feats = [feat.shape for feat in feats] assert len(feats) == 5 assert feats[0] == torch.Size((1, 64, 4, 4)) assert feats[1] == torch.Size((1, 256, 2, 2)) assert feats[2] == torch.Size((1, 512, 1, 1)) assert feats[3] == torch.Size((1, 1024, 1, 1)) assert feats[4] == torch.Size((1, 2048, 1, 1)) # Test resnetv2_50x3_bitm from timm, features_only=True, output_stride=8 model = TIMMBackbone( model_name='resnetv2_50x3_bitm', features_only=True, pretrained=False, output_stride=8) imgs = torch.randn(1, 3, 8, 8) feats = model(imgs) feats = [feat.shape for feat in feats] assert len(feats) == 5 assert feats[0] == torch.Size((1, 192, 4, 4)) assert feats[1] == torch.Size((1, 768, 2, 2)) assert feats[2] == torch.Size((1, 1536, 1, 1)) assert feats[3] == torch.Size((1, 3072, 1, 1)) assert feats[4] == torch.Size((1, 6144, 1, 1)) # Test resnetv2_101x1_bitm from timm, features_only=True, output_stride=8 model = TIMMBackbone( model_name='resnetv2_101x1_bitm', features_only=True, pretrained=False, output_stride=8) imgs = torch.randn(1, 3, 8, 8) feats = model(imgs) feats = [feat.shape for feat in feats] assert len(feats) == 5 assert feats[0] == torch.Size((1, 64, 4, 4)) assert feats[1] == torch.Size((1, 256, 2, 2)) assert feats[2] == torch.Size((1, 512, 1, 1)) assert feats[3] == torch.Size((1, 1024, 1, 1)) assert feats[4] == torch.Size((1, 2048, 1, 1))