mmsegmentation/configs/fastfcn
MengzhangLI 6d35d76195
[Benchmark] Uploading FastFCN on ADE20K (#972)
* Uploading FastFCN on ADE20K

* fixing lint error
2021-10-19 20:27:33 -07:00
..
README.md [Benchmark] Uploading FastFCN on ADE20K (#972) 2021-10-19 20:27:33 -07:00
fastfcn.yml [Benchmark] Uploading FastFCN on ADE20K (#972) 2021-10-19 20:27:33 -07:00
fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes.py [Feature] Support FastFCN (#885) 2021-10-01 02:41:24 +08:00
fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k.py [Benchmark] Uploading FastFCN on ADE20K (#972) 2021-10-19 20:27:33 -07:00
fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k.py [Benchmark] Uploading FastFCN on ADE20K (#972) 2021-10-19 20:27:33 -07:00
fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes.py [Feature] Support FastFCN (#885) 2021-10-01 02:41:24 +08:00
fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes.py [Feature] Support FastFCN (#885) 2021-10-01 02:41:24 +08:00
fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k.py [Benchmark] Uploading FastFCN on ADE20K (#972) 2021-10-19 20:27:33 -07:00
fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k.py [Benchmark] Uploading FastFCN on ADE20K (#972) 2021-10-19 20:27:33 -07:00
fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes.py [Feature] Support FastFCN (#885) 2021-10-01 02:41:24 +08:00
fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes.py [Feature] Support FastFCN (#885) 2021-10-01 02:41:24 +08:00
fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k.py [Benchmark] Uploading FastFCN on ADE20K (#972) 2021-10-19 20:27:33 -07:00
fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k.py [Benchmark] Uploading FastFCN on ADE20K (#972) 2021-10-19 20:27:33 -07:00
fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes.py [Feature] Support FastFCN (#885) 2021-10-01 02:41:24 +08:00

README.md

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation

Introduction

Official Repo

Code Snippet

FastFCN (ArXiv'2019)
@article{wu2019fastfcn,
title={Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation},
author={Wu, Huikai and Zhang, Junge and Huang, Kaiqi and Liang, Kongming and Yu, Yizhou},
journal={arXiv preprint arXiv:1903.11816},
year={2019}
}

Results and models

Cityscapes

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
DeepLabV3 + JPU R-50-D32 512x1024 80000 5.67 2.64 79.12 80.58 config model | log
DeepLabV3 + JPU (4x4) R-50-D32 512x1024 80000 9.79 - 79.52 80.91 config model | log
PSPNet + JPU R-50-D32 512x1024 80000 5.67 4.40 79.26 80.86 config model | log
PSPNet + JPU (4x4) R-50-D32 512x1024 80000 9.94 - 78.76 80.03 config model | log
EncNet + JPU R-50-D32 512x1024 80000 8.15 4.77 77.97 79.92 config model | log
EncNet + JPU (4x4) R-50-D32 512x1024 80000 15.45 - 78.6 80.25 config model | log

ADE20K

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
DeepLabV3 + JPU R-50-D32 512x1024 80000 8.46 12.06 41.88 42.91 config model | log
DeepLabV3 + JPU R-50-D32 512x1024 160000 - - 43.58 44.92 config model | log
PSPNet + JPU R-50-D32 512x1024 80000 8.02 19.21 41.40 42.12 config model | log
PSPNet + JPU R-50-D32 512x1024 160000 - - 42.63 43.71 config model | log
EncNet + JPU R-50-D32 512x1024 80000 9.67 17.23 40.88 42.36 config model | log
EncNet + JPU R-50-D32 512x1024 160000 - - 42.50 44.21 config model | log

Note: