mmsegmentation/configs/icnet
MengzhangLI d966f98f83
[Feature] Support ICNet (#884)
* add icnet backbone

* add icnet head

* add icnet configs

* nclass -> num_classes

* Support ICNet

* ICNet

* ICNet

* Add ICNeck

* Add ICNeck

* Add ICNeck

* Add ICNeck

* Adding unittest

* Uploading models & logs

* Uploading models & logs

* add comment

* smaller test_swin.py

* try to delete test_swin.py

* delete test_unet.py

* delete test_unet.py

* temp

* smaller test_unet.py

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-09-30 09:31:57 -07:00
..
README.md [Feature] Support ICNet (#884) 2021-09-30 09:31:57 -07:00
icnet.yml [Feature] Support ICNet (#884) 2021-09-30 09:31:57 -07:00
icnet_r18-d8_832x832_80k_cityscapes.py [Feature] Support ICNet (#884) 2021-09-30 09:31:57 -07:00
icnet_r18-d8_832x832_160k_cityscapes.py [Feature] Support ICNet (#884) 2021-09-30 09:31:57 -07:00
icnet_r18-d8_in1k-pre_832x832_80k_cityscapes.py [Feature] Support ICNet (#884) 2021-09-30 09:31:57 -07:00
icnet_r18-d8_in1k-pre_832x832_160k_cityscapes.py [Feature] Support ICNet (#884) 2021-09-30 09:31:57 -07:00
icnet_r50-d8_832x832_80k_cityscapes.py [Feature] Support ICNet (#884) 2021-09-30 09:31:57 -07:00
icnet_r50-d8_832x832_160k_cityscapes.py [Feature] Support ICNet (#884) 2021-09-30 09:31:57 -07:00
icnet_r50-d8_in1k-pre_832x832_80k_cityscapes.py [Feature] Support ICNet (#884) 2021-09-30 09:31:57 -07:00
icnet_r50-d8_in1k-pre_832x832_160k_cityscapes.py [Feature] Support ICNet (#884) 2021-09-30 09:31:57 -07:00
icnet_r101-d8_832x832_80k_cityscapes.py [Feature] Support ICNet (#884) 2021-09-30 09:31:57 -07:00
icnet_r101-d8_832x832_160k_cityscapes.py [Feature] Support ICNet (#884) 2021-09-30 09:31:57 -07:00
icnet_r101-d8_in1k-pre_832x832_80k_cityscapes.py [Feature] Support ICNet (#884) 2021-09-30 09:31:57 -07:00
icnet_r101-d8_in1k-pre_832x832_160k_cityscapes.py [Feature] Support ICNet (#884) 2021-09-30 09:31:57 -07:00

README.md

ICNet for Real-time Semantic Segmentation on High-resolution Images

Introduction

Official Repo

Code Snippet

ICNet (ECCV'2018)
@inproceedings{zhao2018icnet,
  title={Icnet for real-time semantic segmentation on high-resolution images},
  author={Zhao, Hengshuang and Qi, Xiaojuan and Shen, Xiaoyong and Shi, Jianping and Jia, Jiaya},
  booktitle={Proceedings of the European conference on computer vision (ECCV)},
  pages={405--420},
  year={2018}
}

Results and models

Cityscapes

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
ICNet R-18-D8 832x832 80000 1.70 27.12 68.14 70.16 config model | log
ICNet R-18-D8 832x832 160000 - - 71.64 74.18 config model | log
ICNet (in1k-pre) R-18-D8 832x832 80000 - - 72.51 74.78 config model | log
ICNet (in1k-pre) R-18-D8 832x832 160000 - - 74.43 76.72 config model | log
ICNet R-50-D8 832x832 80000 2.53 20.08 68.91 69.72 config model | log
ICNet R-50-D8 832x832 160000 - - 73.82 75.67 config model | log
ICNet (in1k-pre) R-50-D8 832x832 80000 - - 74.58 76.41 config model | log
ICNet (in1k-pre) R-50-D8 832x832 160000 - - 76.29 78.09 config model | log
ICNet R-101-D8 832x832 80000 3.08 16.95 70.28 71.95 config model | log
ICNet R-101-D8 832x832 160000 - - 73.80 76.10 config model | log
ICNet (in1k-pre) R-101-D8 832x832 80000 - - 75.57 77.86 config model | log
ICNet (in1k-pre) R-101-D8 832x832 160000 - - 76.15 77.98 config model | log

Note: in1k-pre means pretrained model is used.