696 lines
22 KiB
YAML
696 lines
22 KiB
YAML
Models:
|
|
- Name: fcn_hr18s_512x1024_40k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 42.12
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 1.7
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 73.86
|
|
mIoU(ms+flip): 75.91
|
|
Config: configs/hrnet/fcn_hr18s_512x1024_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_40k_cityscapes/fcn_hr18s_512x1024_40k_cityscapes_20200601_014216-93db27d0.pth
|
|
- Name: fcn_hr18_512x1024_40k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 77.1
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 2.9
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.19
|
|
mIoU(ms+flip): 78.92
|
|
Config: configs/hrnet/fcn_hr18_512x1024_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_40k_cityscapes/fcn_hr18_512x1024_40k_cityscapes_20200601_014216-f196fb4e.pth
|
|
- Name: fcn_hr48_512x1024_40k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 155.76
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 6.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.48
|
|
mIoU(ms+flip): 79.69
|
|
Config: configs/hrnet/fcn_hr48_512x1024_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_40k_cityscapes/fcn_hr48_512x1024_40k_cityscapes_20200601_014240-a989b146.pth
|
|
- Name: fcn_hr18s_512x1024_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 75.31
|
|
mIoU(ms+flip): 77.48
|
|
Config: configs/hrnet/fcn_hr18s_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_80k_cityscapes/fcn_hr18s_512x1024_80k_cityscapes_20200601_202700-1462b75d.pth
|
|
- Name: fcn_hr18_512x1024_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.65
|
|
mIoU(ms+flip): 80.35
|
|
Config: configs/hrnet/fcn_hr18_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_80k_cityscapes/fcn_hr18_512x1024_80k_cityscapes_20200601_223255-4e7b345e.pth
|
|
- Name: fcn_hr48_512x1024_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.93
|
|
mIoU(ms+flip): 80.72
|
|
Config: configs/hrnet/fcn_hr48_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_80k_cityscapes/fcn_hr48_512x1024_80k_cityscapes_20200601_202606-58ea95d6.pth
|
|
- Name: fcn_hr18s_512x1024_160k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,1024)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.31
|
|
mIoU(ms+flip): 78.31
|
|
Config: configs/hrnet/fcn_hr18s_512x1024_160k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_160k_cityscapes/fcn_hr18s_512x1024_160k_cityscapes_20200602_190901-4a0797ea.pth
|
|
- Name: fcn_hr18_512x1024_160k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,1024)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.8
|
|
mIoU(ms+flip): 80.74
|
|
Config: configs/hrnet/fcn_hr18_512x1024_160k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_160k_cityscapes/fcn_hr18_512x1024_160k_cityscapes_20200602_190822-221e4a4f.pth
|
|
- Name: fcn_hr48_512x1024_160k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,1024)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 80.65
|
|
mIoU(ms+flip): 81.92
|
|
Config: configs/hrnet/fcn_hr48_512x1024_160k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_160k_cityscapes/fcn_hr48_512x1024_160k_cityscapes_20200602_190946-59b7973e.pth
|
|
- Name: fcn_hr18s_512x512_80k_ade20k
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 25.87
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 3.8
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 31.38
|
|
mIoU(ms+flip): 32.45
|
|
Config: configs/hrnet/fcn_hr18s_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_ade20k/fcn_hr18s_512x512_80k_ade20k_20200614_144345-77fc814a.pth
|
|
- Name: fcn_hr18_512x512_80k_ade20k
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 44.31
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 4.9
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 36.27
|
|
mIoU(ms+flip): 37.28
|
|
Config: configs/hrnet/fcn_hr18_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20210827_114910-6c9382c0.pth
|
|
- Name: fcn_hr48_512x512_80k_ade20k
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 47.1
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 8.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 41.9
|
|
mIoU(ms+flip): 43.27
|
|
Config: configs/hrnet/fcn_hr48_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_ade20k/fcn_hr48_512x512_80k_ade20k_20200614_193946-7ba5258d.pth
|
|
- Name: fcn_hr18s_512x512_160k_ade20k
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 33.07
|
|
mIoU(ms+flip): 34.56
|
|
Config: configs/hrnet/fcn_hr18s_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20210829_174739-f1e7c2e7.pth
|
|
- Name: fcn_hr18_512x512_160k_ade20k
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 36.79
|
|
mIoU(ms+flip): 38.58
|
|
Config: configs/hrnet/fcn_hr18_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_160k_ade20k/fcn_hr18_512x512_160k_ade20k_20200614_214426-ca961836.pth
|
|
- Name: fcn_hr48_512x512_160k_ade20k
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 42.02
|
|
mIoU(ms+flip): 43.86
|
|
Config: configs/hrnet/fcn_hr48_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_160k_ade20k/fcn_hr48_512x512_160k_ade20k_20200614_214407-a52fc02c.pth
|
|
- Name: fcn_hr18s_512x512_20k_voc12aug
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
lr schd: 20000
|
|
inference time (ms/im):
|
|
- value: 23.06
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 1.8
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 65.5
|
|
mIoU(ms+flip): 68.89
|
|
Config: configs/hrnet/fcn_hr18s_512x512_20k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20210829_174910-0aceadb4.pth
|
|
- Name: fcn_hr18_512x512_20k_voc12aug
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
lr schd: 20000
|
|
inference time (ms/im):
|
|
- value: 42.59
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 2.9
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 72.3
|
|
mIoU(ms+flip): 74.71
|
|
Config: configs/hrnet/fcn_hr18_512x512_20k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_20k_voc12aug/fcn_hr18_512x512_20k_voc12aug_20200617_224503-488d45f7.pth
|
|
- Name: fcn_hr48_512x512_20k_voc12aug
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
lr schd: 20000
|
|
inference time (ms/im):
|
|
- value: 45.35
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 6.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 75.87
|
|
mIoU(ms+flip): 78.58
|
|
Config: configs/hrnet/fcn_hr48_512x512_20k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_20k_voc12aug/fcn_hr48_512x512_20k_voc12aug_20200617_224419-89de05cd.pth
|
|
- Name: fcn_hr18s_512x512_40k_voc12aug
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 66.61
|
|
mIoU(ms+flip): 70.0
|
|
Config: configs/hrnet/fcn_hr18s_512x512_40k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_40k_voc12aug/fcn_hr18s_512x512_40k_voc12aug_20200614_000648-4f8d6e7f.pth
|
|
- Name: fcn_hr18_512x512_40k_voc12aug
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 72.9
|
|
mIoU(ms+flip): 75.59
|
|
Config: configs/hrnet/fcn_hr18_512x512_40k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_40k_voc12aug/fcn_hr18_512x512_40k_voc12aug_20200613_224401-1b4b76cd.pth
|
|
- Name: fcn_hr48_512x512_40k_voc12aug
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 76.24
|
|
mIoU(ms+flip): 78.49
|
|
Config: configs/hrnet/fcn_hr48_512x512_40k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_40k_voc12aug/fcn_hr48_512x512_40k_voc12aug_20200613_222111-1b0f18bc.pth
|
|
- Name: fcn_hr48_480x480_40k_pascal_context
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (480,480)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 112.87
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (480,480)
|
|
Training Memory (GB): 6.1
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal Context
|
|
Metrics:
|
|
mIoU: 45.14
|
|
mIoU(ms+flip): 47.42
|
|
Config: configs/hrnet/fcn_hr48_480x480_40k_pascal_context.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context/fcn_hr48_480x480_40k_pascal_context_20200911_164852-667d00b0.pth
|
|
- Name: fcn_hr48_480x480_80k_pascal_context
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (480,480)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal Context
|
|
Metrics:
|
|
mIoU: 45.84
|
|
mIoU(ms+flip): 47.84
|
|
Config: configs/hrnet/fcn_hr48_480x480_80k_pascal_context.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context/fcn_hr48_480x480_80k_pascal_context_20200911_155322-847a6711.pth
|
|
- Name: fcn_hr48_480x480_40k_pascal_context_59
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (480,480)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal Context 59
|
|
Metrics:
|
|
mIoU: 50.33
|
|
mIoU(ms+flip): 52.83
|
|
Config: configs/hrnet/fcn_hr48_480x480_40k_pascal_context_59.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59_20210410_122738-b808b8b2.pth
|
|
- Name: fcn_hr48_480x480_80k_pascal_context_59
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (480,480)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal Context 59
|
|
Metrics:
|
|
mIoU: 51.12
|
|
mIoU(ms+flip): 53.56
|
|
Config: configs/hrnet/fcn_hr48_480x480_80k_pascal_context_59.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59_20210411_003240-3ae7081e.pth
|
|
- Name: fcn_hr18s_512x512_80k_loveda
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 40.21
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 1.59
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: LoveDA
|
|
Metrics:
|
|
mIoU: 49.28
|
|
mIoU(ms+flip): 49.42
|
|
Config: configs/hrnet/fcn_hr18s_512x512_80k_loveda.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211210_203228-60a86a7a.pth
|
|
- Name: fcn_hr18_512x512_80k_loveda
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 77.4
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 2.76
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: LoveDA
|
|
Metrics:
|
|
mIoU: 50.81
|
|
mIoU(ms+flip): 50.95
|
|
Config: configs/hrnet/fcn_hr18_512x512_80k_loveda.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211210_203952-93d9c3b3.pth
|
|
- Name: fcn_hr48_512x512_80k_loveda
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 104.06
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 6.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: LoveDA
|
|
Metrics:
|
|
mIoU: 51.42
|
|
mIoU(ms+flip): 51.64
|
|
Config: configs/hrnet/fcn_hr48_512x512_80k_loveda.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211211_044756-67072f55.pth
|
|
- Name: fcn_hr18s_512x512_80k_potsdam
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 27.78
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 1.58
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Potsdam
|
|
Metrics:
|
|
mIoU: 77.64
|
|
mIoU(ms+flip): 78.8
|
|
Config: configs/hrnet/fcn_hr18s_512x512_80k_potsdam.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_potsdam/fcn_hr18s_512x512_80k_potsdam_20211218_205517-ba32af63.pth
|
|
- Name: fcn_hr18_512x512_80k_potsdam
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 51.95
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 2.76
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Potsdam
|
|
Metrics:
|
|
mIoU: 78.26
|
|
mIoU(ms+flip): 79.24
|
|
Config: configs/hrnet/fcn_hr18_512x512_80k_potsdam.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_potsdam/fcn_hr18_512x512_80k_potsdam_20211218_205517-5d0387ad.pth
|
|
- Name: fcn_hr48_512x512_80k_potsdam
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 60.9
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 6.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Potsdam
|
|
Metrics:
|
|
mIoU: 78.39
|
|
mIoU(ms+flip): 79.34
|
|
Config: configs/hrnet/fcn_hr48_512x512_80k_potsdam.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_potsdam/fcn_hr48_512x512_80k_potsdam_20211219_020601-97434c78.pth
|
|
- Name: fcn_hr18s_4x4_512x512_80k_vaihingen
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 26.24
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 1.58
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Vaihingen
|
|
Metrics:
|
|
mIoU: 71.81
|
|
mIoU(ms+flip): 73.1
|
|
Config: configs/hrnet/fcn_hr18s_4x4_512x512_80k_vaihingen.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_512x512_80k_vaihingen/fcn_hr18s_4x4_512x512_80k_vaihingen_20211231_230909-b23aae02.pth
|
|
- Name: fcn_hr18_4x4_512x512_80k_vaihingen
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 51.15
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 2.76
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Vaihingen
|
|
Metrics:
|
|
mIoU: 72.57
|
|
mIoU(ms+flip): 74.09
|
|
Config: configs/hrnet/fcn_hr18_4x4_512x512_80k_vaihingen.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_512x512_80k_vaihingen/fcn_hr18_4x4_512x512_80k_vaihingen_20211231_231216-2ec3ae8a.pth
|
|
- Name: fcn_hr48_4x4_512x512_80k_vaihingen
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 57.97
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 6.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Vaihingen
|
|
Metrics:
|
|
mIoU: 72.5
|
|
mIoU(ms+flip): 73.52
|
|
Config: configs/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen/fcn_hr48_4x4_512x512_80k_vaihingen_20211231_231244-7133cb22.pth
|
|
- Name: fcn_hr18s_4x4_896x896_80k_isaid
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (896,896)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 72.25
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (896,896)
|
|
Training Memory (GB): 4.95
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: iSAID
|
|
Metrics:
|
|
mIoU: 62.3
|
|
mIoU(ms+flip): 62.97
|
|
Config: configs/hrnet/fcn_hr18s_4x4_896x896_80k_isaid.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_896x896_80k_isaid/fcn_hr18s_4x4_896x896_80k_isaid_20220118_001603-3cc0769b.pth
|
|
- Name: fcn_hr18_4x4_896x896_80k_isaid
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (896,896)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 129.7
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (896,896)
|
|
Training Memory (GB): 8.3
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: iSAID
|
|
Metrics:
|
|
mIoU: 65.06
|
|
mIoU(ms+flip): 65.6
|
|
Config: configs/hrnet/fcn_hr18_4x4_896x896_80k_isaid.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_896x896_80k_isaid/fcn_hr18_4x4_896x896_80k_isaid_20220110_182230-49bf752e.pth
|
|
- Name: fcn_hr48_4x4_896x896_80k_isaid
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (896,896)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 136.24
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (896,896)
|
|
Training Memory (GB): 16.89
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: iSAID
|
|
Metrics:
|
|
mIoU: 67.8
|
|
mIoU(ms+flip): 68.53
|
|
Config: configs/hrnet/fcn_hr48_4x4_896x896_80k_isaid.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_896x896_80k_isaid/fcn_hr48_4x4_896x896_80k_isaid_20220114_174643-547fc420.pth
|