290 lines
13 KiB
YAML
290 lines
13 KiB
YAML
Models:
|
|
- Name: twins_pcpvt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512
|
|
In Collection: FPN
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 43.26
|
|
mIoU(ms+flip): 44.11
|
|
Config: configs/twins/twins_pcpvt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 32
|
|
Architecture:
|
|
- Twins-PCPVT-S
|
|
- FPN
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 6.6
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_204132-41acd132.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_204132.log.json
|
|
Paper:
|
|
Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers'
|
|
URL: https://arxiv.org/pdf/2104.13840.pdf
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352
|
|
Framework: PyTorch
|
|
- Name: twins_pcpvt-s_uperhead_8xb4-160k_ade20k-512x512
|
|
In Collection: UPerNet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 46.04
|
|
mIoU(ms+flip): 46.92
|
|
Config: configs/twins/twins_pcpvt-s_uperhead_8xb4-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 32
|
|
Architecture:
|
|
- Twins-PCPVT-S
|
|
- UPerNet
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 9.67
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k_20211201_233537-8e99c07a.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k_20211201_233537.log.json
|
|
Paper:
|
|
Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers'
|
|
URL: https://arxiv.org/pdf/2104.13840.pdf
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352
|
|
Framework: PyTorch
|
|
- Name: twins_pcpvt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512
|
|
In Collection: FPN
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 45.66
|
|
mIoU(ms+flip): 46.48
|
|
Config: configs/twins/twins_pcpvt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 32
|
|
Architecture:
|
|
- Twins-PCPVT-B
|
|
- FPN
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 8.41
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141019-d396db72.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141019.log.json
|
|
Paper:
|
|
Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers'
|
|
URL: https://arxiv.org/pdf/2104.13840.pdf
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352
|
|
Framework: PyTorch
|
|
- Name: twins_pcpvt-b_uperhead_8xb2-160k_ade20k-512x512
|
|
In Collection: UPerNet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 47.91
|
|
mIoU(ms+flip): 48.64
|
|
Config: configs/twins/twins_pcpvt-b_uperhead_8xb2-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- Twins-PCPVT-B
|
|
- UPerNet
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 6.46
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k_20211130_141020-02094ea5.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k_20211130_141020.log.json
|
|
Paper:
|
|
Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers'
|
|
URL: https://arxiv.org/pdf/2104.13840.pdf
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352
|
|
Framework: PyTorch
|
|
- Name: twins_pcpvt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512
|
|
In Collection: FPN
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 45.94
|
|
mIoU(ms+flip): 46.7
|
|
Config: configs/twins/twins_pcpvt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 32
|
|
Architecture:
|
|
- Twins-PCPVT-L
|
|
- FPN
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 10.78
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_105226-bc6d61dc.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_105226.log.json
|
|
Paper:
|
|
Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers'
|
|
URL: https://arxiv.org/pdf/2104.13840.pdf
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352
|
|
Framework: PyTorch
|
|
- Name: twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512
|
|
In Collection: UPerNet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 49.35
|
|
mIoU(ms+flip): 50.08
|
|
Config: configs/twins/twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- Twins-PCPVT-L
|
|
- UPerNet
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 7.82
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k_20211201_075053-c6095c07.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k_20211201_075053.log.json
|
|
Paper:
|
|
Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers'
|
|
URL: https://arxiv.org/pdf/2104.13840.pdf
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352
|
|
Framework: PyTorch
|
|
- Name: twins_svt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512
|
|
In Collection: FPN
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 44.47
|
|
mIoU(ms+flip): 45.42
|
|
Config: configs/twins/twins_svt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 32
|
|
Architecture:
|
|
- Twins-SVT-S
|
|
- FPN
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 5.8
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141006-0a0d3317.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141006.log.json
|
|
Paper:
|
|
Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers'
|
|
URL: https://arxiv.org/pdf/2104.13840.pdf
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352
|
|
Framework: PyTorch
|
|
- Name: twins_svt-s_uperhead_8xb2-160k_ade20k-512x512
|
|
In Collection: UPerNet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 46.08
|
|
mIoU(ms+flip): 46.96
|
|
Config: configs/twins/twins_svt-s_uperhead_8xb2-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- SVT-S
|
|
- UPerNet
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 4.93
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_uperhead_8x2_512x512_160k_ade20k/twins_svt-s_uperhead_8x2_512x512_160k_ade20k_20211130_141005-e48a2d94.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_uperhead_8x2_512x512_160k_ade20k/twins_svt-s_uperhead_8x2_512x512_160k_ade20k_20211130_141005.log.json
|
|
Paper:
|
|
Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers'
|
|
URL: https://arxiv.org/pdf/2104.13840.pdf
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352
|
|
Framework: PyTorch
|
|
- Name: twins_svt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512
|
|
In Collection: FPN
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 46.77
|
|
mIoU(ms+flip): 47.47
|
|
Config: configs/twins/twins_svt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 32
|
|
Architecture:
|
|
- Twins-SVT-B
|
|
- FPN
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 8.75
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_113849-88b2907c.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_113849.log.json
|
|
Paper:
|
|
Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers'
|
|
URL: https://arxiv.org/pdf/2104.13840.pdf
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352
|
|
Framework: PyTorch
|
|
- Name: twins_svt-b_uperhead_8xb2-160k_ade20k-512x512
|
|
In Collection: UPerNet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 48.04
|
|
mIoU(ms+flip): 48.87
|
|
Config: configs/twins/twins_svt-b_uperhead_8xb2-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- Twins-SVT-B
|
|
- UPerNet
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 6.77
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_uperhead_8x2_512x512_160k_ade20k/twins_svt-b_uperhead_8x2_512x512_160k_ade20k_20211202_040826-0943a1f1.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_uperhead_8x2_512x512_160k_ade20k/twins_svt-b_uperhead_8x2_512x512_160k_ade20k_20211202_040826.log.json
|
|
Paper:
|
|
Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers'
|
|
URL: https://arxiv.org/pdf/2104.13840.pdf
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352
|
|
Framework: PyTorch
|
|
- Name: twins_svt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512
|
|
In Collection: FPN
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 46.55
|
|
mIoU(ms+flip): 47.74
|
|
Config: configs/twins/twins_svt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 32
|
|
Architecture:
|
|
- Twins-SVT-L
|
|
- FPN
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 11.2
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141005-1d59bee2.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141005.log.json
|
|
Paper:
|
|
Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers'
|
|
URL: https://arxiv.org/pdf/2104.13840.pdf
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352
|
|
Framework: PyTorch
|
|
- Name: twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512
|
|
In Collection: UPerNet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 49.65
|
|
mIoU(ms+flip): 50.63
|
|
Config: configs/twins/twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- Twins-SVT-L
|
|
- UPerNet
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 8.41
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_uperhead_8x2_512x512_160k_ade20k/twins_svt-l_uperhead_8x2_512x512_160k_ade20k_20211130_141005-3e2cae61.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_uperhead_8x2_512x512_160k_ade20k/twins_svt-l_uperhead_8x2_512x512_160k_ade20k_20211130_141005.log.json
|
|
Paper:
|
|
Title: 'Twins: Revisiting the Design of Spatial Attention in Vision Transformers'
|
|
URL: https://arxiv.org/pdf/2104.13840.pdf
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/twins.py#L352
|
|
Framework: PyTorch
|