mmsegmentation/configs/cgnet
谢昕辰 a95f6d8173
[Feature] support mim (#549)
* dice loss

* format code, add docstring and calculate denominator without valid_mask

* minor change

* restore

* add metafile

* add manifest.in and add config at setup.py

* add requirements

* modify manifest

* modify manifest

* Update MANIFEST.in

* add metafile

* add metadata

* fix typo

* Update metafile.yml

* Update metafile.yml

* minor change

* Update metafile.yml

* add subfix

* fix mmshow

* add more  metafile

* add config to model_zoo

* fix bug

* Update mminstall.txt

* [fix] Add models

* [Fix] Add collections

* [fix] Modify collection name

* [Fix] Set datasets to unet metafile

* [Fix] Modify collection names

* complement inference time
2021-05-31 15:07:24 -07:00
..
README.md comment tag (#505) 2021-04-24 09:58:59 -07:00
cgnet_512x1024_60k_cityscapes.py [New model] Support CGNet (#223) 2020-11-03 00:05:25 -08:00
cgnet_680x680_60k_cityscapes.py [New model] Support CGNet (#223) 2020-11-03 00:05:25 -08:00
metafile.yml [Feature] support mim (#549) 2021-05-31 15:07:24 -07:00

README.md

CGNet: A Light-weight Context Guided Network for Semantic Segmentation

Introduction

@article{wu2020cgnet,
  title={Cgnet: A light-weight context guided network for semantic segmentation},
  author={Wu, Tianyi and Tang, Sheng and Zhang, Rui and Cao, Juan and Zhang, Yongdong},
  journal={IEEE Transactions on Image Processing},
  volume={30},
  pages={1169--1179},
  year={2020},
  publisher={IEEE}
}

Results and models

Cityscapes

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
CGNet M3N21 680x680 60000 7.5 30.51 65.63 68.04 config model | log
CGNet M3N21 512x1024 60000 8.3 31.14 68.27 70.33 config model | log