mmsegmentation/configs/apcnet/apcnet.yml

233 lines
7.6 KiB
YAML

Collections:
- Name: apcnet
Metadata:
Training Data:
- Cityscapes
- ADE20K
Paper:
URL: https://openaccess.thecvf.com/content_CVPR_2019/html/He_Adaptive_Pyramid_Context_Network_for_Semantic_Segmentation_CVPR_2019_paper.html
Title: Adaptive Pyramid Context Network for Semantic Segmentation
README: configs/apcnet/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/apc_head.py#L111
Version: v0.17.0
Converted From:
Code: https://github.com/Junjun2016/APCNet
Models:
- Name: apcnet_r50-d8_512x1024_40k_cityscapes
In Collection: apcnet
Metadata:
backbone: R-50-D8
crop size: (512,1024)
lr schd: 40000
inference time (ms/im):
- value: 280.11
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 7.7
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.02
mIoU(ms+flip): 79.26
Config: configs/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes/apcnet_r50-d8_512x1024_40k_cityscapes_20201214_115717-5e88fa33.pth
- Name: apcnet_r101-d8_512x1024_40k_cityscapes
In Collection: apcnet
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 40000
inference time (ms/im):
- value: 465.12
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 11.2
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.08
mIoU(ms+flip): 80.34
Config: configs/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes/apcnet_r101-d8_512x1024_40k_cityscapes_20201214_115716-abc9d111.pth
- Name: apcnet_r50-d8_769x769_40k_cityscapes
In Collection: apcnet
Metadata:
backbone: R-50-D8
crop size: (769,769)
lr schd: 40000
inference time (ms/im):
- value: 657.89
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
Training Memory (GB): 8.7
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.89
mIoU(ms+flip): 79.75
Config: configs/apcnet/apcnet_r50-d8_769x769_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_40k_cityscapes/apcnet_r50-d8_769x769_40k_cityscapes_20201214_115717-2a2628d7.pth
- Name: apcnet_r101-d8_769x769_40k_cityscapes
In Collection: apcnet
Metadata:
backbone: R-101-D8
crop size: (769,769)
lr schd: 40000
inference time (ms/im):
- value: 970.87
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
Training Memory (GB): 12.7
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.96
mIoU(ms+flip): 79.24
Config: configs/apcnet/apcnet_r101-d8_769x769_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_40k_cityscapes/apcnet_r101-d8_769x769_40k_cityscapes_20201214_115718-b650de90.pth
- Name: apcnet_r50-d8_512x1024_80k_cityscapes
In Collection: apcnet
Metadata:
backbone: R-50-D8
crop size: (512,1024)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.96
mIoU(ms+flip): 79.94
Config: configs/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes/apcnet_r50-d8_512x1024_80k_cityscapes_20201214_115716-987f51e3.pth
- Name: apcnet_r101-d8_512x1024_80k_cityscapes
In Collection: apcnet
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.64
mIoU(ms+flip): 80.61
Config: configs/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes/apcnet_r101-d8_512x1024_80k_cityscapes_20201214_115705-b1ff208a.pth
- Name: apcnet_r50-d8_769x769_80k_cityscapes
In Collection: apcnet
Metadata:
backbone: R-50-D8
crop size: (769,769)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.79
mIoU(ms+flip): 80.35
Config: configs/apcnet/apcnet_r50-d8_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_80k_cityscapes/apcnet_r50-d8_769x769_80k_cityscapes_20201214_115718-7ea9fa12.pth
- Name: apcnet_r101-d8_769x769_80k_cityscapes
In Collection: apcnet
Metadata:
backbone: R-101-D8
crop size: (769,769)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.45
mIoU(ms+flip): 79.91
Config: configs/apcnet/apcnet_r101-d8_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_80k_cityscapes/apcnet_r101-d8_769x769_80k_cityscapes_20201214_115716-a7fbc2ab.pth
- Name: apcnet_r50-d8_512x512_80k_ade20k
In Collection: apcnet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 50.99
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 10.1
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.2
mIoU(ms+flip): 43.3
Config: configs/apcnet/apcnet_r50-d8_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_80k_ade20k/apcnet_r50-d8_512x512_80k_ade20k_20201214_115705-a8626293.pth
- Name: apcnet_r101-d8_512x512_80k_ade20k
In Collection: apcnet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 76.34
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 13.6
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.54
mIoU(ms+flip): 46.65
Config: configs/apcnet/apcnet_r101-d8_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_80k_ade20k/apcnet_r101-d8_512x512_80k_ade20k_20201214_115704-c656c3fb.pth
- Name: apcnet_r50-d8_512x512_160k_ade20k
In Collection: apcnet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.4
mIoU(ms+flip): 43.94
Config: configs/apcnet/apcnet_r50-d8_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_160k_ade20k/apcnet_r50-d8_512x512_160k_ade20k_20201214_115706-25fb92c2.pth
- Name: apcnet_r101-d8_512x512_160k_ade20k
In Collection: apcnet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.41
mIoU(ms+flip): 46.63
Config: configs/apcnet/apcnet_r101-d8_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_160k_ade20k/apcnet_r101-d8_512x512_160k_ade20k_20201214_115705-73f9a8d7.pth