233 lines
7.6 KiB
YAML
233 lines
7.6 KiB
YAML
Collections:
|
|
- Name: apcnet
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- ADE20K
|
|
Paper:
|
|
URL: https://openaccess.thecvf.com/content_CVPR_2019/html/He_Adaptive_Pyramid_Context_Network_for_Semantic_Segmentation_CVPR_2019_paper.html
|
|
Title: Adaptive Pyramid Context Network for Semantic Segmentation
|
|
README: configs/apcnet/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/apc_head.py#L111
|
|
Version: v0.17.0
|
|
Converted From:
|
|
Code: https://github.com/Junjun2016/APCNet
|
|
Models:
|
|
- Name: apcnet_r50-d8_512x1024_40k_cityscapes
|
|
In Collection: apcnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 280.11
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 7.7
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.02
|
|
mIoU(ms+flip): 79.26
|
|
Config: configs/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes/apcnet_r50-d8_512x1024_40k_cityscapes_20201214_115717-5e88fa33.pth
|
|
- Name: apcnet_r101-d8_512x1024_40k_cityscapes
|
|
In Collection: apcnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 465.12
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 11.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.08
|
|
mIoU(ms+flip): 80.34
|
|
Config: configs/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes/apcnet_r101-d8_512x1024_40k_cityscapes_20201214_115716-abc9d111.pth
|
|
- Name: apcnet_r50-d8_769x769_40k_cityscapes
|
|
In Collection: apcnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (769,769)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 657.89
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 8.7
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.89
|
|
mIoU(ms+flip): 79.75
|
|
Config: configs/apcnet/apcnet_r50-d8_769x769_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_40k_cityscapes/apcnet_r50-d8_769x769_40k_cityscapes_20201214_115717-2a2628d7.pth
|
|
- Name: apcnet_r101-d8_769x769_40k_cityscapes
|
|
In Collection: apcnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (769,769)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 970.87
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 12.7
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.96
|
|
mIoU(ms+flip): 79.24
|
|
Config: configs/apcnet/apcnet_r101-d8_769x769_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_40k_cityscapes/apcnet_r101-d8_769x769_40k_cityscapes_20201214_115718-b650de90.pth
|
|
- Name: apcnet_r50-d8_512x1024_80k_cityscapes
|
|
In Collection: apcnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.96
|
|
mIoU(ms+flip): 79.94
|
|
Config: configs/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes/apcnet_r50-d8_512x1024_80k_cityscapes_20201214_115716-987f51e3.pth
|
|
- Name: apcnet_r101-d8_512x1024_80k_cityscapes
|
|
In Collection: apcnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.64
|
|
mIoU(ms+flip): 80.61
|
|
Config: configs/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes/apcnet_r101-d8_512x1024_80k_cityscapes_20201214_115705-b1ff208a.pth
|
|
- Name: apcnet_r50-d8_769x769_80k_cityscapes
|
|
In Collection: apcnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.79
|
|
mIoU(ms+flip): 80.35
|
|
Config: configs/apcnet/apcnet_r50-d8_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_80k_cityscapes/apcnet_r50-d8_769x769_80k_cityscapes_20201214_115718-7ea9fa12.pth
|
|
- Name: apcnet_r101-d8_769x769_80k_cityscapes
|
|
In Collection: apcnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.45
|
|
mIoU(ms+flip): 79.91
|
|
Config: configs/apcnet/apcnet_r101-d8_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_80k_cityscapes/apcnet_r101-d8_769x769_80k_cityscapes_20201214_115716-a7fbc2ab.pth
|
|
- Name: apcnet_r50-d8_512x512_80k_ade20k
|
|
In Collection: apcnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 50.99
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 10.1
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 42.2
|
|
mIoU(ms+flip): 43.3
|
|
Config: configs/apcnet/apcnet_r50-d8_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_80k_ade20k/apcnet_r50-d8_512x512_80k_ade20k_20201214_115705-a8626293.pth
|
|
- Name: apcnet_r101-d8_512x512_80k_ade20k
|
|
In Collection: apcnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 76.34
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 13.6
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 45.54
|
|
mIoU(ms+flip): 46.65
|
|
Config: configs/apcnet/apcnet_r101-d8_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_80k_ade20k/apcnet_r101-d8_512x512_80k_ade20k_20201214_115704-c656c3fb.pth
|
|
- Name: apcnet_r50-d8_512x512_160k_ade20k
|
|
In Collection: apcnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 43.4
|
|
mIoU(ms+flip): 43.94
|
|
Config: configs/apcnet/apcnet_r50-d8_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_160k_ade20k/apcnet_r50-d8_512x512_160k_ade20k_20201214_115706-25fb92c2.pth
|
|
- Name: apcnet_r101-d8_512x512_160k_ade20k
|
|
In Collection: apcnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 45.41
|
|
mIoU(ms+flip): 46.63
|
|
Config: configs/apcnet/apcnet_r101-d8_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_160k_ade20k/apcnet_r101-d8_512x512_160k_ade20k_20201214_115705-73f9a8d7.pth
|