mmsegmentation/tests/test_models/test_heads/test_uper_head.py

36 lines
1.0 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmseg.models.decode_heads import UPerHead
from .utils import _conv_has_norm, to_cuda
def test_uper_head():
with pytest.raises(AssertionError):
# fpn_in_channels must be list|tuple
UPerHead(in_channels=4, channels=2, num_classes=19)
# test no norm_cfg
head = UPerHead(
in_channels=[4, 2], channels=2, num_classes=19, in_index=[-2, -1])
assert not _conv_has_norm(head, sync_bn=False)
# test with norm_cfg
head = UPerHead(
in_channels=[4, 2],
channels=2,
num_classes=19,
norm_cfg=dict(type='SyncBN'),
in_index=[-2, -1])
assert _conv_has_norm(head, sync_bn=True)
inputs = [torch.randn(1, 4, 45, 45), torch.randn(1, 2, 21, 21)]
head = UPerHead(
in_channels=[4, 2], channels=2, num_classes=19, in_index=[-2, -1])
if torch.cuda.is_available():
head, inputs = to_cuda(head, inputs)
outputs = head(inputs)
assert outputs.shape == (1, head.num_classes, 45, 45)