mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
* add icnet backbone * add icnet head * add icnet configs * nclass -> num_classes * Support ICNet * ICNet * ICNet * Add ICNeck * Add ICNeck * Add ICNeck * Add ICNeck * Adding unittest * Uploading models & logs * Uploading models & logs * add comment * smaller test_swin.py * try to delete test_swin.py * delete test_unet.py * delete test_unet.py * temp * smaller test_unet.py Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
126 lines
4.2 KiB
YAML
126 lines
4.2 KiB
YAML
Collections:
|
|
- Name: bisenetv1
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
Paper:
|
|
URL: https://arxiv.org/abs/1808.00897
|
|
Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation'
|
|
README: configs/bisenetv1/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv1.py#L266
|
|
Version: v0.18.0
|
|
Converted From:
|
|
Code: https://github.com/ycszen/TorchSeg/tree/master/model/bisenet
|
|
Models:
|
|
- Name: bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes
|
|
In Collection: bisenetv1
|
|
Metadata:
|
|
backbone: R-18-D32
|
|
crop size: (1024,1024)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 31.48
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (1024,1024)
|
|
memory (GB): 5.69
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 74.44
|
|
mIoU(ms+flip): 77.05
|
|
Config: configs/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes_20210922_172239-c55e78e2.pth
|
|
- Name: bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes
|
|
In Collection: bisenetv1
|
|
Metadata:
|
|
backbone: R-18-D32
|
|
crop size: (1024,1024)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 31.48
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (1024,1024)
|
|
memory (GB): 5.69
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 74.37
|
|
mIoU(ms+flip): 76.91
|
|
Config: configs/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210905_220251-8ba80eff.pth
|
|
- Name: bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes
|
|
In Collection: bisenetv1
|
|
Metadata:
|
|
backbone: R-18-D32
|
|
crop size: (1024,1024)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 31.48
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (1024,1024)
|
|
memory (GB): 11.17
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 75.16
|
|
mIoU(ms+flip): 77.24
|
|
Config: configs/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes_20210905_220322-bb8db75f.pth
|
|
- Name: bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes
|
|
In Collection: bisenetv1
|
|
Metadata:
|
|
backbone: R-50-D32
|
|
crop size: (1024,1024)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 129.7
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (1024,1024)
|
|
memory (GB): 15.39
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.92
|
|
mIoU(ms+flip): 78.87
|
|
Config: configs/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes_20210923_222639-7b28a2a6.pth
|
|
- Name: bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes
|
|
In Collection: bisenetv1
|
|
Metadata:
|
|
backbone: R-50-D32
|
|
crop size: (1024,1024)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 129.7
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (1024,1024)
|
|
memory (GB): 15.39
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.68
|
|
mIoU(ms+flip): 79.57
|
|
Config: configs/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210917_234628-8b304447.pth
|