谢昕辰 a95f6d8173
[Feature] support mim (#549)
* dice loss

* format code, add docstring and calculate denominator without valid_mask

* minor change

* restore

* add metafile

* add manifest.in and add config at setup.py

* add requirements

* modify manifest

* modify manifest

* Update MANIFEST.in

* add metafile

* add metadata

* fix typo

* Update metafile.yml

* Update metafile.yml

* minor change

* Update metafile.yml

* add subfix

* fix mmshow

* add more  metafile

* add config to model_zoo

* fix bug

* Update mminstall.txt

* [fix] Add models

* [Fix] Add collections

* [fix] Modify collection name

* [Fix] Set datasets to unet metafile

* [Fix] Modify collection names

* complement inference time
2021-05-31 15:07:24 -07:00

175 lines
5.7 KiB
YAML

Collections:
- Name: APCNet
Metadata:
Training Data:
- Cityscapes
- ADE20K
Models:
- Name: apcnet_r50-d8_512x1024_40k_cityscapes
In Collection: APCNet
Metadata:
inference time (fps): 3.57
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.02
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes/apcnet_r50-d8_512x1024_40k_cityscapes_20201214_115717-5e88fa33.pth
Config: configs/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes.py
- Name: apcnet_r101-d8_512x1024_40k_cityscapes
In Collection: APCNet
Metadata:
inference time (fps): 2.15
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.08
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes/apcnet_r101-d8_512x1024_40k_cityscapes_20201214_115716-abc9d111.pth
Config: configs/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes.py
- Name: apcnet_r50-d8_769x769_40k_cityscapes
In Collection: APCNet
Metadata:
inference time (fps): 1.52
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.89
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_40k_cityscapes/apcnet_r50-d8_769x769_40k_cityscapes_20201214_115717-2a2628d7.pth
Config: configs/apcnet/apcnet_r50-d8_769x769_40k_cityscapes.py
- Name: apcnet_r101-d8_769x769_40k_cityscapes
In Collection: APCNet
Metadata:
inference time (fps): 1.03
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.96
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_40k_cityscapes/apcnet_r101-d8_769x769_40k_cityscapes_20201214_115718-b650de90.pth
Config: configs/apcnet/apcnet_r101-d8_769x769_40k_cityscapes.py
- Name: apcnet_r50-d8_512x1024_80k_cityscapes
In Collection: APCNet
Metadata:
inference time (fps): 3.57
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.96
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes/apcnet_r50-d8_512x1024_80k_cityscapes_20201214_115716-987f51e3.pth
Config: configs/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes.py
- Name: apcnet_r101-d8_512x1024_80k_cityscapes
In Collection: APCNet
Metadata:
inference time (fps): 2.15
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.64
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes/apcnet_r101-d8_512x1024_80k_cityscapes_20201214_115705-b1ff208a.pth
Config: configs/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes.py
- Name: apcnet_r50-d8_769x769_80k_cityscapes
In Collection: APCNet
Metadata:
inference time (fps): 1.52
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.79
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_80k_cityscapes/apcnet_r50-d8_769x769_80k_cityscapes_20201214_115718-7ea9fa12.pth
Config: configs/apcnet/apcnet_r50-d8_769x769_80k_cityscapes.py
- Name: apcnet_r101-d8_769x769_80k_cityscapes
In Collection: APCNet
Metadata:
inference time (fps): 1.03
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.45
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_80k_cityscapes/apcnet_r101-d8_769x769_80k_cityscapes_20201214_115716-a7fbc2ab.pth
Config: configs/apcnet/apcnet_r101-d8_769x769_80k_cityscapes.py
- Name: apcnet_r50-d8_512x512_80k_ade20k
In Collection: APCNet
Metadata:
inference time (fps): 19.61
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.20
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_80k_ade20k/apcnet_r50-d8_512x512_80k_ade20k_20201214_115705-a8626293.pth
Config: configs/apcnet/apcnet_r50-d8_512x512_80k_ade20k.py
- Name: apcnet_r101-d8_512x512_80k_ade20k
In Collection: APCNet
Metadata:
inference time (fps): 13.10
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.54
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_80k_ade20k/apcnet_r101-d8_512x512_80k_ade20k_20201214_115704-c656c3fb.pth
Config: configs/apcnet/apcnet_r101-d8_512x512_80k_ade20k.py
- Name: apcnet_r50-d8_512x512_160k_ade20k
In Collection: APCNet
Metadata:
inference time (fps): 19.61
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.40
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_160k_ade20k/apcnet_r50-d8_512x512_160k_ade20k_20201214_115706-25fb92c2.pth
Config: configs/apcnet/apcnet_r50-d8_512x512_160k_ade20k.py
- Name: apcnet_r101-d8_512x512_160k_ade20k
In Collection: APCNet
Metadata:
inference time (fps): 13.10
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.41
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_160k_ade20k/apcnet_r101-d8_512x512_160k_ade20k_20201214_115705-73f9a8d7.pth
Config: configs/apcnet/apcnet_r101-d8_512x512_160k_ade20k.py