mmsegmentation/configs/apcnet/apcnet.yml

224 lines
7.1 KiB
YAML

Collections:
- Metadata:
Training Data:
- Cityscapes
- ADE20K
Name: apcnet
Models:
- Config: configs/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes.py
In Collection: apcnet
Metadata:
backbone: R-50-D8
crop size: (512,1024)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,1024)
value: 280.11
lr schd: 40000
memory (GB): 7.7
Name: apcnet_r50-d8_512x1024_40k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 78.02
mIoU(ms+flip): 79.26
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes/apcnet_r50-d8_512x1024_40k_cityscapes_20201214_115717-5e88fa33.pth
- Config: configs/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes.py
In Collection: apcnet
Metadata:
backbone: R-101-D8
crop size: (512,1024)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,1024)
value: 465.12
lr schd: 40000
memory (GB): 11.2
Name: apcnet_r101-d8_512x1024_40k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 79.08
mIoU(ms+flip): 80.34
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes/apcnet_r101-d8_512x1024_40k_cityscapes_20201214_115716-abc9d111.pth
- Config: configs/apcnet/apcnet_r50-d8_769x769_40k_cityscapes.py
In Collection: apcnet
Metadata:
backbone: R-50-D8
crop size: (769,769)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (769,769)
value: 657.89
lr schd: 40000
memory (GB): 8.7
Name: apcnet_r50-d8_769x769_40k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 77.89
mIoU(ms+flip): 79.75
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_40k_cityscapes/apcnet_r50-d8_769x769_40k_cityscapes_20201214_115717-2a2628d7.pth
- Config: configs/apcnet/apcnet_r101-d8_769x769_40k_cityscapes.py
In Collection: apcnet
Metadata:
backbone: R-101-D8
crop size: (769,769)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (769,769)
value: 970.87
lr schd: 40000
memory (GB): 12.7
Name: apcnet_r101-d8_769x769_40k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 77.96
mIoU(ms+flip): 79.24
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_40k_cityscapes/apcnet_r101-d8_769x769_40k_cityscapes_20201214_115718-b650de90.pth
- Config: configs/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes.py
In Collection: apcnet
Metadata:
backbone: R-50-D8
crop size: (512,1024)
lr schd: 80000
Name: apcnet_r50-d8_512x1024_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 78.96
mIoU(ms+flip): 79.94
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes/apcnet_r50-d8_512x1024_80k_cityscapes_20201214_115716-987f51e3.pth
- Config: configs/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes.py
In Collection: apcnet
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 80000
Name: apcnet_r101-d8_512x1024_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 79.64
mIoU(ms+flip): 80.61
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes/apcnet_r101-d8_512x1024_80k_cityscapes_20201214_115705-b1ff208a.pth
- Config: configs/apcnet/apcnet_r50-d8_769x769_80k_cityscapes.py
In Collection: apcnet
Metadata:
backbone: R-50-D8
crop size: (769,769)
lr schd: 80000
Name: apcnet_r50-d8_769x769_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 78.79
mIoU(ms+flip): 80.35
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_80k_cityscapes/apcnet_r50-d8_769x769_80k_cityscapes_20201214_115718-7ea9fa12.pth
- Config: configs/apcnet/apcnet_r101-d8_769x769_80k_cityscapes.py
In Collection: apcnet
Metadata:
backbone: R-101-D8
crop size: (769,769)
lr schd: 80000
Name: apcnet_r101-d8_769x769_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 78.45
mIoU(ms+flip): 79.91
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_80k_cityscapes/apcnet_r101-d8_769x769_80k_cityscapes_20201214_115716-a7fbc2ab.pth
- Config: configs/apcnet/apcnet_r50-d8_512x512_80k_ade20k.py
In Collection: apcnet
Metadata:
backbone: R-50-D8
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 50.99
lr schd: 80000
memory (GB): 10.1
Name: apcnet_r50-d8_512x512_80k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 42.2
mIoU(ms+flip): 43.3
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_80k_ade20k/apcnet_r50-d8_512x512_80k_ade20k_20201214_115705-a8626293.pth
- Config: configs/apcnet/apcnet_r101-d8_512x512_80k_ade20k.py
In Collection: apcnet
Metadata:
backbone: R-101-D8
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 76.34
lr schd: 80000
memory (GB): 13.6
Name: apcnet_r101-d8_512x512_80k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 45.54
mIoU(ms+flip): 46.65
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_80k_ade20k/apcnet_r101-d8_512x512_80k_ade20k_20201214_115704-c656c3fb.pth
- Config: configs/apcnet/apcnet_r50-d8_512x512_160k_ade20k.py
In Collection: apcnet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 160000
Name: apcnet_r50-d8_512x512_160k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 43.4
mIoU(ms+flip): 43.94
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_160k_ade20k/apcnet_r50-d8_512x512_160k_ade20k_20201214_115706-25fb92c2.pth
- Config: configs/apcnet/apcnet_r101-d8_512x512_160k_ade20k.py
In Collection: apcnet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 160000
Name: apcnet_r101-d8_512x512_160k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 45.41
mIoU(ms+flip): 46.63
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_160k_ade20k/apcnet_r101-d8_512x512_160k_ade20k_20201214_115705-73f9a8d7.pth