mmsegmentation/docs/en/changelog.md

885 lines
49 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

## Changelog
### V0.29.1 (11/3/2022)
**New Features**
- Add model ensemble tools ([#2218](https://github.com/open-mmlab/mmsegmentation/pull/2218))
**Bug Fixes**
- Use SyncBN in MobileNetV2 ([#2207](https://github.com/open-mmlab/mmsegmentation/pull/2207))
**Documentation**
- Update FAQ doc about binary segmentation and ReduceZeroLabel ([#2206](https://github.com/open-mmlab/mmsegmentation/pull/2206))
- Fix typos ([#2249](https://github.com/open-mmlab/mmsegmentation/pull/2249))
- Fix model results ([#2190](https://github.com/open-mmlab/mmsegmentation/pull/2190), [#2114](https://github.com/open-mmlab/mmsegmentation/pull/2114))
**Contributors**
- @isLinXu made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2219
- @zhijiejia made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2218
- @lee-jinhee made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2249
### V0.29.0 (10/10/2022)
**New Features**
- Support PoolFormer (CVPR'2022) ([#1537](https://github.com/open-mmlab/mmsegmentation/pull/1537))
**Enhancement**
- Improve structure and readability for FCNHead ([#2142](https://github.com/open-mmlab/mmsegmentation/pull/2142))
- Support IterableDataset in distributed training ([#2151](https://github.com/open-mmlab/mmsegmentation/pull/2151))
- Upgrade .dev scripts ([#2020](https://github.com/open-mmlab/mmsegmentation/pull/2020))
- Upgrade pre-commit hooks ([#2155](https://github.com/open-mmlab/mmsegmentation/pull/2155))
**Bug Fixes**
- Fix mmseg.api.inference inference_segmentor ([#1849](https://github.com/open-mmlab/mmsegmentation/pull/1849))
- fix bug about label_map in evaluation part ([#2075](https://github.com/open-mmlab/mmsegmentation/pull/2075))
- Add missing dependencies to torchserve docker file ([#2133](https://github.com/open-mmlab/mmsegmentation/pull/2133))
- Fix ddp unittest ([#2060](https://github.com/open-mmlab/mmsegmentation/pull/2060))
**Contributors**
- @jinwonkim93 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1849
- @rlatjcj made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2075
- @ShirleyWangCVR made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2151
- @mangelroman made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2133
### V0.28.0 (9/8/2022)
**New Features**
- Support Tversky Loss ([#1896](https://github.com/open-mmlab/mmsegmentation/pull/1986))
**Bug Fixes**
- Fix binary segmentation ([#2016](https://github.com/open-mmlab/mmsegmentation/pull/2016))
- Fix config files ([#1901](https://github.com/open-mmlab/mmsegmentation/pull/1901), [#1893](https://github.com/open-mmlab/mmsegmentation/pull/1893), [#1871](https://github.com/open-mmlab/mmsegmentation/pull/1871))
- Revise documentation ([#1844](https://github.com/open-mmlab/mmsegmentation/pull/1844), [#1980](https://github.com/open-mmlab/mmsegmentation/pull/1980), [#2025](https://github.com/open-mmlab/mmsegmentation/pull/2025), [#1982](https://github.com/open-mmlab/mmsegmentation/pull/1982))
- Fix confusion matrix calculation ([#1992](https://github.com/open-mmlab/mmsegmentation/pull/1992))
- Fix decode head forward_train error ([#1997](https://github.com/open-mmlab/mmsegmentation/pull/1997))
**Contributors**
- @suchot made their first contribution in https://github.com/open-mmlab/mmsegmention/pull/1844
- @TimoK93 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1992
### V0.27.0 (7/28/2022)
**Enhancement**
- Add Swin-L Transformer models ([#1471](https://github.com/open-mmlab/mmsegmentation/pull/1471))
- Update ERFNet results ([#1744](https://github.com/open-mmlab/mmsegmentation/pull/1744))
**Bug Fixes**
- Revise documentation ([#1761](https://github.com/open-mmlab/mmsegmentation/pull/1761), [#1755](https://github.com/open-mmlab/mmsegmentation/pull/1755), [#1802](https://github.com/open-mmlab/mmsegmentation/pull/1802))
- Fix colab tutorial ([#1779](https://github.com/open-mmlab/mmsegmentation/pull/1779))
- Fix segformer checkpoint url ([#1785](https://github.com/open-mmlab/mmsegmentation/pull/1785))
**Contributors**
- @DataSttructure made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1802
- @AkideLiu made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1785
- @mawanda-jun made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1761
- @Yan-Daojiang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1755
### V0.26.0 (7/1/2022)
**Highlights**
- Update New SegFormer models on ADE20K ([1705](https://github.com/open-mmlab/mmsegmentation/pull/1705))
- Dedicated MMSegWandbHook for MMSegmentation ([1603](https://github.com/open-mmlab/mmsegmentation/pull/1603))
**New Features**
- Update New SegFormer models on ADE20K ([1705](https://github.com/open-mmlab/mmsegmentation/pull/1705))
- Dedicated MMSegWandbHook for MMSegmentation ([1603](https://github.com/open-mmlab/mmsegmentation/pull/1603))
- Add UPerNet r18 results ([1669](https://github.com/open-mmlab/mmsegmentation/pull/1669))
**Enhancement**
- Keep dimension of `cls_token_weight` for easier ONNX deployment ([1642](https://github.com/open-mmlab/mmsegmentation/pull/1642))
- Support infererence with padding ([1607](https://github.com/open-mmlab/mmsegmentation/pull/1607))
**Bug Fixes**
- Fix typos ([#1640](https://github.com/open-mmlab/mmsegmentation/pull/1640), [#1667](https://github.com/open-mmlab/mmsegmentation/pull/1667), [#1656](https://github.com/open-mmlab/mmsegmentation/pull/1656), [#1699](https://github.com/open-mmlab/mmsegmentation/pull/1699), [#1702](https://github.com/open-mmlab/mmsegmentation/pull/1702), [#1695](https://github.com/open-mmlab/mmsegmentation/pull/1695), [#1707](https://github.com/open-mmlab/mmsegmentation/pull/1707), [#1708](https://github.com/open-mmlab/mmsegmentation/pull/1708), [#1721](https://github.com/open-mmlab/mmsegmentation/pull/1721))
**Documentation**
- Fix `mdformat` version to support python3.6 and remove ruby installation ([1672](https://github.com/open-mmlab/mmsegmentation/pull/1672))
**Contributors**
- @RunningLeon made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1642
- @zhouzaida made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1655
- @tkhe made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1667
- @rotorliu made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1656
- @EvelynWang-0423 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1679
- @ZhaoYi1222 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1616
- @Sanster made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1704
- @ayulockin made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1603
### V0.25.0 (6/2/2022)
**Highlights**
- Support PyTorch backend on MLU ([1515](https://github.com/open-mmlab/mmsegmentation/pull/1515))
**Bug Fixes**
- Fix the error of BCE loss when batch size is 1 ([1629](https://github.com/open-mmlab/mmsegmentation/pull/1629))
- Fix bug of `resize` function when align_corners is True ([1592](https://github.com/open-mmlab/mmsegmentation/pull/1592))
- Fix Dockerfile to run demo script in docker container ([1568](https://github.com/open-mmlab/mmsegmentation/pull/1568))
- Correct inference_demo.ipynb path ([1576](https://github.com/open-mmlab/mmsegmentation/pull/1576))
- Fix the `build_segmentor` in colab demo ([1551](https://github.com/open-mmlab/mmsegmentation/pull/1551))
- Fix md2yml script ([1633](https://github.com/open-mmlab/mmsegmentation/pull/1633), [1555](https://github.com/open-mmlab/mmsegmentation/pull/1555))
- Fix main line link in MAE README.md ([1556](https://github.com/open-mmlab/mmsegmentation/pull/1556))
- Fix fastfcn `crop_size` in README.md by ([1597](https://github.com/open-mmlab/mmsegmentation/pull/1597))
- Pip upgrade when testing windows platform ([1610](https://github.com/open-mmlab/mmsegmentation/pull/1610))
**Improvements**
- Delete DS_Store file ([1549](https://github.com/open-mmlab/mmsegmentation/pull/1549))
- Revise owners.yml ([1621](https://github.com/open-mmlab/mmsegmentation/pull/1621), [1534](https://github.com/open-mmlab/mmsegmentation/pull/1543))
**Documentation**
- Rewrite the installation guidance ([1630](https://github.com/open-mmlab/mmsegmentation/pull/1630))
- Format readme ([1635](https://github.com/open-mmlab/mmsegmentation/pull/1635))
- Replace markdownlint with mdformat to avoid ruby installation ([1591](https://github.com/open-mmlab/mmsegmentation/pull/1591))
- Add explanation and usage instructions for data configuration ([1548](https://github.com/open-mmlab/mmsegmentation/pull/1548))
- Configure Myst-parser to parse anchor tag ([1589](https://github.com/open-mmlab/mmsegmentation/pull/1589))
- Update QR code and link for QQ group ([1598](https://github.com/open-mmlab/mmsegmentation/pull/1598), [1574](https://github.com/open-mmlab/mmsegmentation/pull/1574))
**Contributors**
- @atinfinity made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1568
- @DoubleChuang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1576
- @alpha-baymax made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1515
- @274869388 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1629
### V0.24.1 (5/1/2022)
**Bug Fixes**
- Fix `LayerDecayOptimizerConstructor` for MAE training ([#1539](https://github.com/open-mmlab/mmsegmentation/pull/1539), [#1540](https://github.com/open-mmlab/mmsegmentation/pull/1540))
### V0.24.0 (4/29/2022)
**Highlights**
- Support MAE: Masked Autoencoders Are Scalable Vision Learners
- Support Resnet strikes back
**New Features**
- Support MAE: Masked Autoencoders Are Scalable Vision Learners ([1307](https://github.com/open-mmlab/mmsegmentation/pull/1307), [1523](https://github.com/open-mmlab/mmsegmentation/pull/1523))
- Support Resnet strikes back ([1390](https://github.com/open-mmlab/mmsegmentation/pull/1390))
- Support extra dataloader settings in configs ([1435](https://github.com/open-mmlab/mmsegmentation/pull/1435))
**Bug Fixes**
- Fix input previous results for the last cascade_decode_head ([#1450](https://github.com/open-mmlab/mmsegmentation/pull/1450))
- Fix validation loss logging ([#1494](https://github.com/open-mmlab/mmsegmentation/pull/1494))
- Fix the bug in binary_cross_entropy ([1527](https://github.com/open-mmlab/mmsegmentation/pull/1527))
- Support single channel prediction for Binary Cross Entropy Loss ([#1454](https://github.com/open-mmlab/mmsegmentation/pull/1454))
- Fix potential bugs in accuracy.py ([1496](https://github.com/open-mmlab/mmsegmentation/pull/1496))
- Avoid converting label ids twice by label map during evaluation ([1417](https://github.com/open-mmlab/mmsegmentation/pull/1417))
- Fix bug about label_map ([1445](https://github.com/open-mmlab/mmsegmentation/pull/1445))
- Fix image save path bug in Windows ([1423](https://github.com/open-mmlab/mmsegmentation/pull/1423))
- Fix MMSegmentation Colab demo ([1501](https://github.com/open-mmlab/mmsegmentation/pull/1501), [1452](https://github.com/open-mmlab/mmsegmentation/pull/1452))
- Migrate azure blob for beit checkpoints ([1503](https://github.com/open-mmlab/mmsegmentation/pull/1503))
- Fix bug in `tools/analyse_logs.py` caused by wrong plot_iter in some cases ([1428](https://github.com/open-mmlab/mmsegmentation/pull/1428))
**Improvements**
- Merge BEiT and ConvNext's LR decay optimizer constructors ([#1438](https://github.com/open-mmlab/mmsegmentation/pull/1438))
- Register optimizer constructor with mmseg ([#1456](https://github.com/open-mmlab/mmsegmentation/pull/1456))
- Refactor transformer encode layer in ViT and BEiT backbone ([#1481](https://github.com/open-mmlab/mmsegmentation/pull/1481))
- Add `build_pos_embed` and `build_layers` for BEiT ([1517](https://github.com/open-mmlab/mmsegmentation/pull/1517))
- Add `with_cp` to mit and vit ([1431](https://github.com/open-mmlab/mmsegmentation/pull/1431))
- Fix inconsistent dtype of `seg_label` in stdc decode ([1463](https://github.com/open-mmlab/mmsegmentation/pull/1463))
- Delete random seed for training in `dist_train.sh` ([1519](https://github.com/open-mmlab/mmsegmentation/pull/1519))
- Revise high `workers_per_gpus` in config file ([#1506](https://github.com/open-mmlab/mmsegmentation/pull/1506))
- Add GPG keys and del mmcv version in Dockerfile ([1534](https://github.com/open-mmlab/mmsegmentation/pull/1534))
- Update checkpoint for model in deeplabv3plus ([#1487](https://github.com/open-mmlab/mmsegmentation/pull/1487))
- Add `DistSamplerSeedHook` to set epoch number to dataloader when runner is `EpochBasedRunner` ([1449](https://github.com/open-mmlab/mmsegmentation/pull/1449))
- Provide URLs of Swin Transformer pretrained models ([1389](https://github.com/open-mmlab/mmsegmentation/pull/1389))
- Updating Dockerfiles From Docker Directory and `get_started.md` to reach latest stable version of Python, PyTorch and MMCV ([1446](https://github.com/open-mmlab/mmsegmentation/pull/1446))
**Documentation**
- Add more clearly statement of CPU training/inference ([1518](https://github.com/open-mmlab/mmsegmentation/pull/1518))
**Contributors**
- @jiangyitong made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1431
- @kahkeng made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1447
- @Nourollah made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1446
- @androbaza made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1452
- @Yzichen made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1445
- @whu-pzhang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1423
- @panfeng-hover made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1417
- @Johnson-Wang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1496
- @jere357 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1460
- @mfernezir made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1494
- @donglixp made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1503
- @YuanLiuuuuuu made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1307
- @Dawn-bin made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1527
### V0.23.0 (4/1/2022)
**Highlights**
- Support BEiT: BERT Pre-Training of Image Transformers
- Support K-Net: Towards Unified Image Segmentation
- Add `avg_non_ignore` of CELoss to support average loss over non-ignored elements
- Support dataset initialization with file client
**New Features**
- Support BEiT: BERT Pre-Training of Image Transformers ([#1404](https://github.com/open-mmlab/mmsegmentation/pull/1404))
- Support K-Net: Towards Unified Image Segmentation ([#1289](https://github.com/open-mmlab/mmsegmentation/pull/1289))
- Support dataset initialization with file client ([#1402](https://github.com/open-mmlab/mmsegmentation/pull/1402))
- Add class name function for STARE datasets ([#1376](https://github.com/open-mmlab/mmsegmentation/pull/1376))
- Support different seeds on different ranks when distributed training ([#1362](https://github.com/open-mmlab/mmsegmentation/pull/1362))
- Add `nlc2nchw2nlc` and `nchw2nlc2nchw` to simplify tensor with different dimension operation ([#1249](https://github.com/open-mmlab/mmsegmentation/pull/1249))
**Improvements**
- Synchronize random seed for distributed sampler ([#1411](https://github.com/open-mmlab/mmsegmentation/pull/1411))
- Add script and documentation for multi-machine distributed training ([#1383](https://github.com/open-mmlab/mmsegmentation/pull/1383))
**Bug Fixes**
- Add `avg_non_ignore` of CELoss to support average loss over non-ignored elements ([#1409](https://github.com/open-mmlab/mmsegmentation/pull/1409))
- Fix some wrong URLs of models or logs in `./configs` ([#1336](https://github.com/open-mmlab/mmsegmentation/pull/1433))
- Add title and color theme arguments to plot function in `tools/confusion_matrix.py` ([#1401](https://github.com/open-mmlab/mmsegmentation/pull/1401))
- Fix outdated link in Colab demo ([#1392](https://github.com/open-mmlab/mmsegmentation/pull/1392))
- Fix typos ([#1424](https://github.com/open-mmlab/mmsegmentation/pull/1424), [#1405](https://github.com/open-mmlab/mmsegmentation/pull/1405), [#1371](https://github.com/open-mmlab/mmsegmentation/pull/1371), [#1366](https://github.com/open-mmlab/mmsegmentation/pull/1366), [#1363](https://github.com/open-mmlab/mmsegmentation/pull/1363))
**Documentation**
- Add FAQ document ([#1420](https://github.com/open-mmlab/mmsegmentation/pull/1420))
- Fix the config name style description in official docs([#1414](https://github.com/open-mmlab/mmsegmentation/pull/1414))
**Contributors**
- @kinglintianxia made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1371
- @CCODING04 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1376
- @mob5566 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1401
- @xiongnemo made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1392
- @Xiangxu-0103 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1405
### V0.22.1 (3/9/2022)
**Bug Fixes**
- Fix the ZeroDivisionError that all pixels in one image is ignored. ([#1336](https://github.com/open-mmlab/mmsegmentation/pull/1336))
**Improvements**
- Provide URLs of STDC, Segmenter and Twins pretrained models ([#1272](https://github.com/open-mmlab/mmsegmentation/pull/1357))
### V0.22 (3/04/2022)
**Highlights**
- Support ConvNeXt: A ConvNet for the 2020s. Please use the latest MMClassification (0.21.0) to try it out.
- Support iSAID aerial Dataset.
- Officially Support inference on Windows OS.
**New Features**
- Support ConvNeXt: A ConvNet for the 2020s. ([#1216](https://github.com/open-mmlab/mmsegmentation/pull/1216))
- Support iSAID aerial Dataset. ([#1115](https://github.com/open-mmlab/mmsegmentation/pull/1115)
- Generating and plotting confusion matrix. ([#1301](https://github.com/open-mmlab/mmsegmentation/pull/1301))
**Improvements**
- Refactor 4 decoder heads (ASPP, FCN, PSP, UPer): Split forward function into `_forward_feature` and `cls_seg`. ([#1299](https://github.com/open-mmlab/mmsegmentation/pull/1299))
- Add `min_size` arg in `Resize` to keep the shape after resize bigger than slide window. ([#1318](https://github.com/open-mmlab/mmsegmentation/pull/1318))
- Revise pre-commit-hooks. ([#1315](https://github.com/open-mmlab/mmsegmentation/pull/1315))
- Add win-ci. ([#1296](https://github.com/open-mmlab/mmsegmentation/pull/1296))
**Bug Fixes**
- Fix `mlp_ratio` type in Swin Transformer. ([#1274](https://github.com/open-mmlab/mmsegmentation/pull/1274))
- Fix path errors in `./demo` . ([#1269](https://github.com/open-mmlab/mmsegmentation/pull/1269))
- Fix bug in conversion of potsdam. ([#1279](https://github.com/open-mmlab/mmsegmentation/pull/1279))
- Make accuracy take into account `ignore_index`. ([#1259](https://github.com/open-mmlab/mmsegmentation/pull/1259))
- Add Pytorch HardSwish assertion in unit test. ([#1294](https://github.com/open-mmlab/mmsegmentation/pull/1294))
- Fix wrong palette value in vaihingen. ([#1292](https://github.com/open-mmlab/mmsegmentation/pull/1292))
- Fix the bug that SETR cannot load pretrain. ([#1293](https://github.com/open-mmlab/mmsegmentation/pull/1293))
- Update correct `In Collection` in metafile of each configs. ([#1239](https://github.com/open-mmlab/mmsegmentation/pull/1239))
- Upload completed STDC models. ([#1332](https://github.com/open-mmlab/mmsegmentation/pull/1332))
- Fix `DNLHead` exports onnx inference difference type Cast error. ([#1161](https://github.com/open-mmlab/mmsegmentation/pull/1332))
**Contributors**
- @JiaYanhao made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1269
- @andife made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1281
- @SBCV made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1279
- @HJoonKwon made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1259
- @Tsingularity made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1290
- @Waterman0524 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1115
- @MeowZheng made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1315
- @linfangjian01 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1318
### V0.21.1 (2/9/2022)
**Bug Fixes**
- Fix typos in docs. ([#1263](https://github.com/open-mmlab/mmsegmentation/pull/1263))
- Fix repeating log by `setup_multi_processes`. ([#1267](https://github.com/open-mmlab/mmsegmentation/pull/1267))
- Upgrade isort in pre-commit hook. ([#1270](https://github.com/open-mmlab/mmsegmentation/pull/1270))
**Improvements**
- Use MMCV load_state_dict func in ViT/Swin. ([#1272](https://github.com/open-mmlab/mmsegmentation/pull/1272))
- Add exception for PointRend for support CPU-only. ([#1271](https://github.com/open-mmlab/mmsegmentation/pull/1270))
### V0.21 (1/29/2022)
**Highlights**
- Officially Support CPUs training and inference, please use the latest MMCV (1.4.4) to try it out.
- Support Segmenter: Transformer for Semantic Segmentation (ICCV'2021).
- Support ISPRS Potsdam and Vaihingen Dataset.
- Add Mosaic transform and `MultiImageMixDataset` class in `dataset_wrappers`.
**New Features**
- Support Segmenter: Transformer for Semantic Segmentation (ICCV'2021) ([#955](https://github.com/open-mmlab/mmsegmentation/pull/955))
- Support ISPRS Potsdam and Vaihingen Dataset ([#1097](https://github.com/open-mmlab/mmsegmentation/pull/1097), [#1171](https://github.com/open-mmlab/mmsegmentation/pull/1171))
- Add segformers benchmark on cityscapes ([#1155](https://github.com/open-mmlab/mmsegmentation/pull/1155))
- Add auto resume ([#1172](https://github.com/open-mmlab/mmsegmentation/pull/1172))
- Add Mosaic transform and `MultiImageMixDataset` class in `dataset_wrappers` ([#1093](https://github.com/open-mmlab/mmsegmentation/pull/1093), [#1105](https://github.com/open-mmlab/mmsegmentation/pull/1105))
- Add log collector ([#1175](https://github.com/open-mmlab/mmsegmentation/pull/1175))
**Improvements**
- New-style CPU training and inference ([#1251](https://github.com/open-mmlab/mmsegmentation/pull/1251))
- Add UNet benchmark with multiple losses supervision ([#1143](https://github.com/open-mmlab/mmsegmentation/pull/1143))
**Bug Fixes**
- Fix the model statistics in doc for readthedoc ([#1153](https://github.com/open-mmlab/mmsegmentation/pull/1153))
- Set random seed for `palette` if not given ([#1152](https://github.com/open-mmlab/mmsegmentation/pull/1152))
- Add `COCOStuffDataset` in `class_names.py` ([#1222](https://github.com/open-mmlab/mmsegmentation/pull/1222))
- Fix bug in non-distributed multi-gpu training/testing ([#1247](https://github.com/open-mmlab/mmsegmentation/pull/1247))
- Delete unnecessary lines of STDCHead ([#1231](https://github.com/open-mmlab/mmsegmentation/pull/1231))
**Contributors**
- @jbwang1997 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1152
- @BeaverCC made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1206
- @Echo-minn made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1214
- @rstrudel made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/955
### V0.20.2 (12/15/2021)
**Bug Fixes**
- Revise --option to --options to avoid BC-breaking. ([#1140](https://github.com/open-mmlab/mmsegmentation/pull/1140))
### V0.20.1 (12/14/2021)
**Improvements**
- Change options to cfg-options ([#1129](https://github.com/open-mmlab/mmsegmentation/pull/1129))
**Bug Fixes**
- Fix `<!-- [ABSTRACT] -->` in metafile. ([#1127](https://github.com/open-mmlab/mmsegmentation/pull/1127))
- Fix correct `num_classes` of HRNet in `LoveDA` dataset ([#1136](https://github.com/open-mmlab/mmsegmentation/pull/1136))
### V0.20 (12/10/2021)
**Highlights**
- Support Twins ([#989](https://github.com/open-mmlab/mmsegmentation/pull/989))
- Support a real-time segmentation model STDC ([#995](https://github.com/open-mmlab/mmsegmentation/pull/995))
- Support a widely-used segmentation model in lane detection ERFNet ([#960](https://github.com/open-mmlab/mmsegmentation/pull/960))
- Support A Remote Sensing Land-Cover Dataset LoveDA ([#1028](https://github.com/open-mmlab/mmsegmentation/pull/1028))
- Support focal loss ([#1024](https://github.com/open-mmlab/mmsegmentation/pull/1024))
**New Features**
- Support Twins ([#989](https://github.com/open-mmlab/mmsegmentation/pull/989))
- Support a real-time segmentation model STDC ([#995](https://github.com/open-mmlab/mmsegmentation/pull/995))
- Support a widely-used segmentation model in lane detection ERFNet ([#960](https://github.com/open-mmlab/mmsegmentation/pull/960))
- Add SETR cityscapes benchmark ([#1087](https://github.com/open-mmlab/mmsegmentation/pull/1087))
- Add BiSeNetV1 COCO-Stuff 164k benchmark ([#1019](https://github.com/open-mmlab/mmsegmentation/pull/1019))
- Support focal loss ([#1024](https://github.com/open-mmlab/mmsegmentation/pull/1024))
- Add Cutout transform ([#1022](https://github.com/open-mmlab/mmsegmentation/pull/1022))
**Improvements**
- Set a random seed when the user does not set a seed ([#1039](https://github.com/open-mmlab/mmsegmentation/pull/1039))
- Add CircleCI setup ([#1086](https://github.com/open-mmlab/mmsegmentation/pull/1086))
- Skip CI on ignoring given paths ([#1078](https://github.com/open-mmlab/mmsegmentation/pull/1078))
- Add abstract and image for every paper ([#1060](https://github.com/open-mmlab/mmsegmentation/pull/1060))
- Create a symbolic link on windows ([#1090](https://github.com/open-mmlab/mmsegmentation/pull/1090))
- Support video demo using trained model ([#1014](https://github.com/open-mmlab/mmsegmentation/pull/1014))
**Bug Fixes**
- Fix incorrectly loading init_cfg or pretrained models of several transformer models ([#999](https://github.com/open-mmlab/mmsegmentation/pull/999), [#1069](https://github.com/open-mmlab/mmsegmentation/pull/1069), [#1102](https://github.com/open-mmlab/mmsegmentation/pull/1102))
- Fix EfficientMultiheadAttention in SegFormer ([#1037](https://github.com/open-mmlab/mmsegmentation/pull/1037))
- Remove `fp16` folder in `configs` ([#1031](https://github.com/open-mmlab/mmsegmentation/pull/1031))
- Fix several typos in .yml file (Dice Metric [#1041](https://github.com/open-mmlab/mmsegmentation/pull/1041), ADE20K dataset [#1120](https://github.com/open-mmlab/mmsegmentation/pull/1120), Training Memory (GB) [#1083](https://github.com/open-mmlab/mmsegmentation/pull/1083))
- Fix test error when using `--show-dir` ([#1091](https://github.com/open-mmlab/mmsegmentation/pull/1091))
- Fix dist training infinite waiting issue ([#1035](https://github.com/open-mmlab/mmsegmentation/pull/1035))
- Change the upper version of mmcv to 1.5.0 ([#1096](https://github.com/open-mmlab/mmsegmentation/pull/1096))
- Fix symlink failure on Windows ([#1038](https://github.com/open-mmlab/mmsegmentation/pull/1038))
- Cancel previous runs that are not completed ([#1118](https://github.com/open-mmlab/mmsegmentation/pull/1118))
- Unified links of readthedocs in docs ([#1119](https://github.com/open-mmlab/mmsegmentation/pull/1119))
**Contributors**
- @Junjue-Wang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1028
- @ddebby made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1066
- @del-zhenwu made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1078
- @KangBK0120 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1106
- @zergzzlun made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1091
- @fingertap made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1035
- @irvingzhang0512 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1014
- @littleSunlxy made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/989
- @lkm2835
- @RockeyCoss
- @MengzhangLI
- @Junjun2016
- @xiexinch
- @xvjiarui
### V0.19 (11/02/2021)
**Highlights**
- Support TIMMBackbone wrapper ([#998](https://github.com/open-mmlab/mmsegmentation/pull/998))
- Support custom hook ([#428](https://github.com/open-mmlab/mmsegmentation/pull/428))
- Add codespell pre-commit hook ([#920](https://github.com/open-mmlab/mmsegmentation/pull/920))
- Add FastFCN benchmark on ADE20K ([#972](https://github.com/open-mmlab/mmsegmentation/pull/972))
**New Features**
- Support TIMMBackbone wrapper ([#998](https://github.com/open-mmlab/mmsegmentation/pull/998))
- Support custom hook ([#428](https://github.com/open-mmlab/mmsegmentation/pull/428))
- Add FastFCN benchmark on ADE20K ([#972](https://github.com/open-mmlab/mmsegmentation/pull/972))
- Add codespell pre-commit hook and fix typos ([#920](https://github.com/open-mmlab/mmsegmentation/pull/920))
**Improvements**
- Make inputs & channels smaller in unittests ([#1004](https://github.com/open-mmlab/mmsegmentation/pull/1004))
- Change `self.loss_decode` back to `dict` in Single Loss situation ([#1002](https://github.com/open-mmlab/mmsegmentation/pull/1002))
**Bug Fixes**
- Fix typo in usage example ([#1003](https://github.com/open-mmlab/mmsegmentation/pull/1003))
- Add contiguous after permutation in ViT ([#992](https://github.com/open-mmlab/mmsegmentation/pull/992))
- Fix the invalid link ([#985](https://github.com/open-mmlab/mmsegmentation/pull/985))
- Fix bug in CI with python 3.9 ([#994](https://github.com/open-mmlab/mmsegmentation/pull/994))
- Fix bug when loading class name form file in custom dataset ([#923](https://github.com/open-mmlab/mmsegmentation/pull/923))
**Contributors**
- @ShoupingShan made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/923
- @RockeyCoss made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/954
- @HarborYuan made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/992
- @lkm2835 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1003
- @gszh made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/428
- @VVsssssk
- @MengzhangLI
- @Junjun2016
### V0.18 (10/07/2021)
**Highlights**
- Support three real-time segmentation models (ICNet [#884](https://github.com/open-mmlab/mmsegmentation/pull/884), BiSeNetV1 [#851](https://github.com/open-mmlab/mmsegmentation/pull/851), and BiSeNetV2 [#804](https://github.com/open-mmlab/mmsegmentation/pull/804))
- Support one efficient segmentation model (FastFCN [#885](https://github.com/open-mmlab/mmsegmentation/pull/885))
- Support one efficient non-local/self-attention based segmentation model (ISANet [#70](https://github.com/open-mmlab/mmsegmentation/pull/70))
- Support COCO-Stuff 10k and 164k datasets ([#625](https://github.com/open-mmlab/mmsegmentation/pull/625))
- Support evaluate concated dataset separately ([#833](https://github.com/open-mmlab/mmsegmentation/pull/833))
- Support loading GT for evaluation from multi-file backend ([#867](https://github.com/open-mmlab/mmsegmentation/pull/867))
**New Features**
- Support three real-time segmentation models (ICNet [#884](https://github.com/open-mmlab/mmsegmentation/pull/884), BiSeNetV1 [#851](https://github.com/open-mmlab/mmsegmentation/pull/851), and BiSeNetV2 [#804](https://github.com/open-mmlab/mmsegmentation/pull/804))
- Support one efficient segmentation model (FastFCN [#885](https://github.com/open-mmlab/mmsegmentation/pull/885))
- Support one efficient non-local/self-attention based segmentation model (ISANet [#70](https://github.com/open-mmlab/mmsegmentation/pull/70))
- Support COCO-Stuff 10k and 164k datasets ([#625](https://github.com/open-mmlab/mmsegmentation/pull/625))
- Support evaluate concated dataset separately ([#833](https://github.com/open-mmlab/mmsegmentation/pull/833))
**Improvements**
- Support loading GT for evaluation from multi-file backend ([#867](https://github.com/open-mmlab/mmsegmentation/pull/867))
- Auto-convert SyncBN to BN when training on DP automatly([#772](https://github.com/open-mmlab/mmsegmentation/pull/772))
- Refactor Swin-Transformer ([#800](https://github.com/open-mmlab/mmsegmentation/pull/800))
**Bug Fixes**
- Update mmcv installation in dockerfile ([#860](https://github.com/open-mmlab/mmsegmentation/pull/860))
- Fix number of iteration bug when resuming checkpoint in distributed train ([#866](https://github.com/open-mmlab/mmsegmentation/pull/866))
- Fix parsing parse in val_step ([#906](https://github.com/open-mmlab/mmsegmentation/pull/906))
### V0.17 (09/01/2021)
**Highlights**
- Support SegFormer
- Support DPT
- Support Dark Zurich and Nighttime Driving datasets
- Support progressive evaluation
**New Features**
- Support SegFormer ([#599](https://github.com/open-mmlab/mmsegmentation/pull/599))
- Support DPT ([#605](https://github.com/open-mmlab/mmsegmentation/pull/605))
- Support Dark Zurich and Nighttime Driving datasets ([#815](https://github.com/open-mmlab/mmsegmentation/pull/815))
- Support progressive evaluation ([#709](https://github.com/open-mmlab/mmsegmentation/pull/709))
**Improvements**
- Add multiscale_output interface and unittests for HRNet ([#830](https://github.com/open-mmlab/mmsegmentation/pull/830))
- Support inherit cityscapes dataset ([#750](https://github.com/open-mmlab/mmsegmentation/pull/750))
- Fix some typos in README.md ([#824](https://github.com/open-mmlab/mmsegmentation/pull/824))
- Delete convert function and add instruction to ViT/Swin README.md ([#791](https://github.com/open-mmlab/mmsegmentation/pull/791))
- Add vit/swin/mit convert weight scripts ([#783](https://github.com/open-mmlab/mmsegmentation/pull/783))
- Add copyright files ([#796](https://github.com/open-mmlab/mmsegmentation/pull/796))
**Bug Fixes**
- Fix invalid checkpoint link in inference_demo.ipynb ([#814](https://github.com/open-mmlab/mmsegmentation/pull/814))
- Ensure that items in dataset have the same order across multi machine ([#780](https://github.com/open-mmlab/mmsegmentation/pull/780))
- Fix the log error ([#766](https://github.com/open-mmlab/mmsegmentation/pull/766))
### V0.16 (08/04/2021)
**Highlights**
- Support PyTorch 1.9
- Support SegFormer backbone MiT
- Support md2yml pre-commit hook
- Support frozen stage for HRNet
**New Features**
- Support SegFormer backbone MiT ([#594](https://github.com/open-mmlab/mmsegmentation/pull/594))
- Support md2yml pre-commit hook ([#732](https://github.com/open-mmlab/mmsegmentation/pull/732))
- Support mim ([#717](https://github.com/open-mmlab/mmsegmentation/pull/717))
- Add mmseg2torchserve tool ([#552](https://github.com/open-mmlab/mmsegmentation/pull/552))
**Improvements**
- Support hrnet frozen stage ([#743](https://github.com/open-mmlab/mmsegmentation/pull/743))
- Add template of reimplementation questions ([#741](https://github.com/open-mmlab/mmsegmentation/pull/741))
- Output pdf and epub formats for readthedocs ([#742](https://github.com/open-mmlab/mmsegmentation/pull/742))
- Refine the docstring of ResNet ([#723](https://github.com/open-mmlab/mmsegmentation/pull/723))
- Replace interpolate with resize ([#731](https://github.com/open-mmlab/mmsegmentation/pull/731))
- Update resource limit ([#700](https://github.com/open-mmlab/mmsegmentation/pull/700))
- Update config.md ([#678](https://github.com/open-mmlab/mmsegmentation/pull/678))
**Bug Fixes**
- Fix ATTENTION registry ([#729](https://github.com/open-mmlab/mmsegmentation/pull/729))
- Fix analyze log script ([#716](https://github.com/open-mmlab/mmsegmentation/pull/716))
- Fix doc api display ([#725](https://github.com/open-mmlab/mmsegmentation/pull/725))
- Fix patch_embed and pos_embed mismatch error ([#685](https://github.com/open-mmlab/mmsegmentation/pull/685))
- Fix efficient test for multi-node ([#707](https://github.com/open-mmlab/mmsegmentation/pull/707))
- Fix init_cfg in resnet backbone ([#697](https://github.com/open-mmlab/mmsegmentation/pull/697))
- Fix efficient test bug ([#702](https://github.com/open-mmlab/mmsegmentation/pull/702))
- Fix url error in config docs ([#680](https://github.com/open-mmlab/mmsegmentation/pull/680))
- Fix mmcv installation ([#676](https://github.com/open-mmlab/mmsegmentation/pull/676))
- Fix torch version ([#670](https://github.com/open-mmlab/mmsegmentation/pull/670))
**Contributors**
@sshuair @xiexinch @Junjun2016 @mmeendez8 @xvjiarui @sennnnn @puhsu @BIGWangYuDong @keke1u @daavoo
### V0.15 (07/04/2021)
**Highlights**
- Support ViT, SETR, and Swin-Transformer
- Add Chinese documentation
- Unified parameter initialization
**Bug Fixes**
- Fix typo and links ([#608](https://github.com/open-mmlab/mmsegmentation/pull/608))
- Fix Dockerfile ([#607](https://github.com/open-mmlab/mmsegmentation/pull/607))
- Fix ViT init ([#609](https://github.com/open-mmlab/mmsegmentation/pull/609))
- Fix mmcv version compatible table ([#658](https://github.com/open-mmlab/mmsegmentation/pull/658))
- Fix model links of DMNEt ([#660](https://github.com/open-mmlab/mmsegmentation/pull/660))
**New Features**
- Support loading DeiT weights ([#538](https://github.com/open-mmlab/mmsegmentation/pull/538))
- Support SETR ([#531](https://github.com/open-mmlab/mmsegmentation/pull/531), [#635](https://github.com/open-mmlab/mmsegmentation/pull/635))
- Add config and models for ViT backbone with UperHead ([#520](https://github.com/open-mmlab/mmsegmentation/pull/531), [#635](https://github.com/open-mmlab/mmsegmentation/pull/520))
- Support Swin-Transformer ([#511](https://github.com/open-mmlab/mmsegmentation/pull/511))
- Add higher accuracy FastSCNN ([#606](https://github.com/open-mmlab/mmsegmentation/pull/606))
- Add Chinese documentation ([#666](https://github.com/open-mmlab/mmsegmentation/pull/666))
**Improvements**
- Unified parameter initialization ([#567](https://github.com/open-mmlab/mmsegmentation/pull/567))
- Separate CUDA and CPU in github action CI ([#602](https://github.com/open-mmlab/mmsegmentation/pull/602))
- Support persistent dataloader worker ([#646](https://github.com/open-mmlab/mmsegmentation/pull/646))
- Update meta file fields ([#661](https://github.com/open-mmlab/mmsegmentation/pull/661), [#664](https://github.com/open-mmlab/mmsegmentation/pull/664))
### V0.14 (06/02/2021)
**Highlights**
- Support ONNX to TensorRT
- Support MIM
**Bug Fixes**
- Fix ONNX to TensorRT verify ([#547](https://github.com/open-mmlab/mmsegmentation/pull/547))
- Fix save best for EvalHook ([#575](https://github.com/open-mmlab/mmsegmentation/pull/575))
**New Features**
- Support loading DeiT weights ([#538](https://github.com/open-mmlab/mmsegmentation/pull/538))
- Support ONNX to TensorRT ([#542](https://github.com/open-mmlab/mmsegmentation/pull/542))
- Support output results for ADE20k ([#544](https://github.com/open-mmlab/mmsegmentation/pull/544))
- Support MIM ([#549](https://github.com/open-mmlab/mmsegmentation/pull/549))
**Improvements**
- Add option for ViT output shape ([#530](https://github.com/open-mmlab/mmsegmentation/pull/530))
- Infer batch size using len(result) ([#532](https://github.com/open-mmlab/mmsegmentation/pull/532))
- Add compatible table between MMSeg and MMCV ([#558](https://github.com/open-mmlab/mmsegmentation/pull/558))
### V0.13 (05/05/2021)
**Highlights**
- Support Pascal Context Class-59 dataset.
- Support Visual Transformer Backbone.
- Support mFscore metric.
**Bug Fixes**
- Fixed Colaboratory tutorial ([#451](https://github.com/open-mmlab/mmsegmentation/pull/451))
- Fixed mIoU calculation range ([#471](https://github.com/open-mmlab/mmsegmentation/pull/471))
- Fixed sem_fpn, unet README.md ([#492](https://github.com/open-mmlab/mmsegmentation/pull/492))
- Fixed `num_classes` in FCN for Pascal Context 60-class dataset ([#488](https://github.com/open-mmlab/mmsegmentation/pull/488))
- Fixed FP16 inference ([#497](https://github.com/open-mmlab/mmsegmentation/pull/497))
**New Features**
- Support dynamic export and visualize to pytorch2onnx ([#463](https://github.com/open-mmlab/mmsegmentation/pull/463))
- Support export to torchscript ([#469](https://github.com/open-mmlab/mmsegmentation/pull/469), [#499](https://github.com/open-mmlab/mmsegmentation/pull/499))
- Support Pascal Context Class-59 dataset ([#459](https://github.com/open-mmlab/mmsegmentation/pull/459))
- Support Visual Transformer backbone ([#465](https://github.com/open-mmlab/mmsegmentation/pull/465))
- Support UpSample Neck ([#512](https://github.com/open-mmlab/mmsegmentation/pull/512))
- Support mFscore metric ([#509](https://github.com/open-mmlab/mmsegmentation/pull/509))
**Improvements**
- Add more CI for PyTorch ([#460](https://github.com/open-mmlab/mmsegmentation/pull/460))
- Add print model graph args for tools/print_config.py ([#451](https://github.com/open-mmlab/mmsegmentation/pull/451))
- Add cfg links in modelzoo README.md ([#468](https://github.com/open-mmlab/mmsegmentation/pull/469))
- Add BaseSegmentor import to segmentors/__init__.py ([#495](https://github.com/open-mmlab/mmsegmentation/pull/495))
- Add MMOCR, MMGeneration links ([#501](https://github.com/open-mmlab/mmsegmentation/pull/501), [#506](https://github.com/open-mmlab/mmsegmentation/pull/506))
- Add Chinese QR code ([#506](https://github.com/open-mmlab/mmsegmentation/pull/506))
- Use MMCV MODEL_REGISTRY ([#515](https://github.com/open-mmlab/mmsegmentation/pull/515))
- Add ONNX testing tools ([#498](https://github.com/open-mmlab/mmsegmentation/pull/498))
- Replace data_dict calling 'img' key to support MMDet3D ([#514](https://github.com/open-mmlab/mmsegmentation/pull/514))
- Support reading class_weight from file in loss function ([#513](https://github.com/open-mmlab/mmsegmentation/pull/513))
- Make tags as comment ([#505](https://github.com/open-mmlab/mmsegmentation/pull/505))
- Use MMCV EvalHook ([#438](https://github.com/open-mmlab/mmsegmentation/pull/438))
### V0.12 (04/03/2021)
**Highlights**
- Support FCN-Dilate 6 model.
- Support Dice Loss.
**Bug Fixes**
- Fixed PhotoMetricDistortion Doc ([#388](https://github.com/open-mmlab/mmsegmentation/pull/388))
- Fixed install scripts ([#399](https://github.com/open-mmlab/mmsegmentation/pull/399))
- Fixed Dice Loss multi-class ([#417](https://github.com/open-mmlab/mmsegmentation/pull/417))
**New Features**
- Support Dice Loss ([#396](https://github.com/open-mmlab/mmsegmentation/pull/396))
- Add plot logs tool ([#426](https://github.com/open-mmlab/mmsegmentation/pull/426))
- Add opacity option to show_result ([#425](https://github.com/open-mmlab/mmsegmentation/pull/425))
- Speed up mIoU metric ([#430](https://github.com/open-mmlab/mmsegmentation/pull/430))
**Improvements**
- Refactor unittest file structure ([#440](https://github.com/open-mmlab/mmsegmentation/pull/440))
- Fix typos in the repo ([#449](https://github.com/open-mmlab/mmsegmentation/pull/449))
- Include class-level metrics in the log ([#445](https://github.com/open-mmlab/mmsegmentation/pull/445))
### V0.11 (02/02/2021)
**Highlights**
- Support memory efficient test, add more UNet models.
**Bug Fixes**
- Fixed TTA resize scale ([#334](https://github.com/open-mmlab/mmsegmentation/pull/334))
- Fixed CI for pip 20.3 ([#307](https://github.com/open-mmlab/mmsegmentation/pull/307))
- Fixed ADE20k test ([#359](https://github.com/open-mmlab/mmsegmentation/pull/359))
**New Features**
- Support memory efficient test ([#330](https://github.com/open-mmlab/mmsegmentation/pull/330))
- Add more UNet benchmarks ([#324](https://github.com/open-mmlab/mmsegmentation/pull/324))
- Support Lovasz Loss ([#351](https://github.com/open-mmlab/mmsegmentation/pull/351))
**Improvements**
- Move train_cfg/test_cfg inside model ([#341](https://github.com/open-mmlab/mmsegmentation/pull/341))
### V0.10 (01/01/2021)
**Highlights**
- Support MobileNetV3, DMNet, APCNet. Add models of ResNet18V1b, ResNet18V1c, ResNet50V1b.
**Bug Fixes**
- Fixed CPU TTA ([#276](https://github.com/open-mmlab/mmsegmentation/pull/276))
- Fixed CI for pip 20.3 ([#307](https://github.com/open-mmlab/mmsegmentation/pull/307))
**New Features**
- Add ResNet18V1b, ResNet18V1c, ResNet50V1b, ResNet101V1b models ([#316](https://github.com/open-mmlab/mmsegmentation/pull/316))
- Support MobileNetV3 ([#268](https://github.com/open-mmlab/mmsegmentation/pull/268))
- Add 4 retinal vessel segmentation benchmark ([#315](https://github.com/open-mmlab/mmsegmentation/pull/315))
- Support DMNet ([#313](https://github.com/open-mmlab/mmsegmentation/pull/313))
- Support APCNet ([#299](https://github.com/open-mmlab/mmsegmentation/pull/299))
**Improvements**
- Refactor Documentation page ([#311](https://github.com/open-mmlab/mmsegmentation/pull/311))
- Support resize data augmentation according to original image size ([#291](https://github.com/open-mmlab/mmsegmentation/pull/291))
### V0.9 (30/11/2020)
**Highlights**
- Support 4 medical dataset, UNet and CGNet.
**New Features**
- Support RandomRotate transform ([#215](https://github.com/open-mmlab/mmsegmentation/pull/215), [#260](https://github.com/open-mmlab/mmsegmentation/pull/260))
- Support RGB2Gray transform ([#227](https://github.com/open-mmlab/mmsegmentation/pull/227))
- Support Rerange transform ([#228](https://github.com/open-mmlab/mmsegmentation/pull/228))
- Support ignore_index for BCE loss ([#210](https://github.com/open-mmlab/mmsegmentation/pull/210))
- Add modelzoo statistics ([#263](https://github.com/open-mmlab/mmsegmentation/pull/263))
- Support Dice evaluation metric ([#225](https://github.com/open-mmlab/mmsegmentation/pull/225))
- Support Adjust Gamma transform ([#232](https://github.com/open-mmlab/mmsegmentation/pull/232))
- Support CLAHE transform ([#229](https://github.com/open-mmlab/mmsegmentation/pull/229))
**Bug Fixes**
- Fixed detail API link ([#267](https://github.com/open-mmlab/mmsegmentation/pull/267))
### V0.8 (03/11/2020)
**Highlights**
- Support 4 medical dataset, UNet and CGNet.
**New Features**
- Support customize runner ([#118](https://github.com/open-mmlab/mmsegmentation/pull/118))
- Support UNet ([#161](https://github.com/open-mmlab/mmsegmentation/pull/162))
- Support CHASE_DB1, DRIVE, STARE, HRD ([#203](https://github.com/open-mmlab/mmsegmentation/pull/203))
- Support CGNet ([#223](https://github.com/open-mmlab/mmsegmentation/pull/223))
### V0.7 (07/10/2020)
**Highlights**
- Support Pascal Context dataset and customizing class dataset.
**Bug Fixes**
- Fixed CPU inference ([#153](https://github.com/open-mmlab/mmsegmentation/pull/153))
**New Features**
- Add DeepLab OS16 models ([#154](https://github.com/open-mmlab/mmsegmentation/pull/154))
- Support Pascal Context dataset ([#133](https://github.com/open-mmlab/mmsegmentation/pull/133))
- Support customizing dataset classes ([#71](https://github.com/open-mmlab/mmsegmentation/pull/71))
- Support customizing dataset palette ([#157](https://github.com/open-mmlab/mmsegmentation/pull/157))
**Improvements**
- Support 4D tensor output in ONNX ([#150](https://github.com/open-mmlab/mmsegmentation/pull/150))
- Remove redundancies in ONNX export ([#160](https://github.com/open-mmlab/mmsegmentation/pull/160))
- Migrate to MMCV DepthwiseSeparableConv ([#158](https://github.com/open-mmlab/mmsegmentation/pull/158))
- Migrate to MMCV collect_env ([#137](https://github.com/open-mmlab/mmsegmentation/pull/137))
- Use img_prefix and seg_prefix for loading ([#153](https://github.com/open-mmlab/mmsegmentation/pull/153))
### V0.6 (10/09/2020)
**Highlights**
- Support new methods i.e. MobileNetV2, EMANet, DNL, PointRend, Semantic FPN, Fast-SCNN, ResNeSt.
**Bug Fixes**
- Fixed sliding inference ONNX export ([#90](https://github.com/open-mmlab/mmsegmentation/pull/90))
**New Features**
- Support MobileNet v2 ([#86](https://github.com/open-mmlab/mmsegmentation/pull/86))
- Support EMANet ([#34](https://github.com/open-mmlab/mmsegmentation/pull/34))
- Support DNL ([#37](https://github.com/open-mmlab/mmsegmentation/pull/37))
- Support PointRend ([#109](https://github.com/open-mmlab/mmsegmentation/pull/109))
- Support Semantic FPN ([#94](https://github.com/open-mmlab/mmsegmentation/pull/94))
- Support Fast-SCNN ([#58](https://github.com/open-mmlab/mmsegmentation/pull/58))
- Support ResNeSt backbone ([#47](https://github.com/open-mmlab/mmsegmentation/pull/47))
- Support ONNX export (experimental) ([#12](https://github.com/open-mmlab/mmsegmentation/pull/12))
**Improvements**
- Support Upsample in ONNX ([#100](https://github.com/open-mmlab/mmsegmentation/pull/100))
- Support Windows install (experimental) ([#75](https://github.com/open-mmlab/mmsegmentation/pull/75))
- Add more OCRNet results ([#20](https://github.com/open-mmlab/mmsegmentation/pull/20))
- Add PyTorch 1.6 CI ([#64](https://github.com/open-mmlab/mmsegmentation/pull/64))
- Get version and githash automatically ([#55](https://github.com/open-mmlab/mmsegmentation/pull/55))
### v0.5.1 (11/08/2020)
**Highlights**
- Support FP16 and more generalized OHEM
**Bug Fixes**
- Fixed Pascal VOC conversion script (#19)
- Fixed OHEM weight assign bug (#54)
- Fixed palette type when palette is not given (#27)
**New Features**
- Support FP16 (#21)
- Generalized OHEM (#54)
**Improvements**
- Add load-from flag (#33)
- Fixed training tricks doc about different learning rates of model (#26)