mmsegmentation/tests/test_models/test_segmentors/utils.py

135 lines
3.9 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmengine.optim import OptimWrapper
from mmengine.structures import PixelData
from torch import nn
from torch.optim import SGD
from mmseg.models import SegDataPreProcessor
from mmseg.models.decode_heads.cascade_decode_head import BaseCascadeDecodeHead
from mmseg.models.decode_heads.decode_head import BaseDecodeHead
from mmseg.registry import MODELS
from mmseg.structures import SegDataSample
def _demo_mm_inputs(input_shape=(1, 3, 8, 16), num_classes=10):
"""Create a superset of inputs needed to run test or train batches.
Args:
input_shape (tuple):
input batch dimensions
num_classes (int):
number of semantic classes
"""
(N, C, H, W) = input_shape
imgs = torch.randn(*input_shape)
segs = torch.randint(
low=0, high=num_classes - 1, size=(N, H, W), dtype=torch.long)
img_metas = [{
'img_shape': (H, W),
'ori_shape': (H, W),
'pad_shape': (H, W, C),
'filename': '<demo>.png',
'scale_factor': 1.0,
'flip': False,
'flip_direction': 'horizontal'
} for _ in range(N)]
data_samples = [
SegDataSample(
gt_sem_seg=PixelData(data=segs[i]), metainfo=img_metas[i])
for i in range(N)
]
mm_inputs = {'imgs': torch.FloatTensor(imgs), 'data_samples': data_samples}
return mm_inputs
@MODELS.register_module()
class ExampleBackbone(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(3, 3, 3)
def init_weights(self, pretrained=None):
pass
def forward(self, x):
return [self.conv(x)]
@MODELS.register_module()
class ExampleDecodeHead(BaseDecodeHead):
def __init__(self, num_classes=19, out_channels=None, **kwargs):
super().__init__(
3, 3, num_classes=num_classes, out_channels=out_channels, **kwargs)
def forward(self, inputs):
return self.cls_seg(inputs[0])
@MODELS.register_module()
class ExampleCascadeDecodeHead(BaseCascadeDecodeHead):
def __init__(self):
super().__init__(3, 3, num_classes=19)
def forward(self, inputs, prev_out):
return self.cls_seg(inputs[0])
def _segmentor_forward_train_test(segmentor):
if isinstance(segmentor.decode_head, nn.ModuleList):
num_classes = segmentor.decode_head[-1].num_classes
else:
num_classes = segmentor.decode_head.num_classes
# batch_size=2 for BatchNorm
mm_inputs = _demo_mm_inputs(num_classes=num_classes)
# convert to cuda Tensor if applicable
if torch.cuda.is_available():
segmentor = segmentor.cuda()
# check data preprocessor
if not hasattr(segmentor,
'data_preprocessor') or segmentor.data_preprocessor is None:
segmentor.data_preprocessor = SegDataPreProcessor()
mm_inputs = segmentor.data_preprocessor(mm_inputs, True)
imgs = mm_inputs.pop('imgs')
data_samples = mm_inputs.pop('data_samples')
# create optimizer wrapper
optimizer = SGD(segmentor.parameters(), lr=0.1)
optim_wrapper = OptimWrapper(optimizer)
# Test forward train
losses = segmentor.forward(imgs, data_samples, mode='loss')
assert isinstance(losses, dict)
# Test train_step
data_batch = dict(inputs=imgs, data_samples=data_samples)
outputs = segmentor.train_step(data_batch, optim_wrapper)
assert isinstance(outputs, dict)
assert 'loss' in outputs
# Test val_step
with torch.no_grad():
segmentor.eval()
data_batch = dict(inputs=imgs, data_samples=data_samples)
outputs = segmentor.val_step(data_batch)
assert isinstance(outputs, list)
# Test forward simple test
with torch.no_grad():
segmentor.eval()
data_batch = dict(inputs=imgs, data_samples=data_samples)
results = segmentor.forward(imgs, data_samples, mode='tensor')
assert isinstance(results, torch.Tensor)