mmsegmentation/mmseg/models/segmentors/depth_estimator.py
Peng Lu c46cc85cba
[Feature] Support VPD Depth Estimator (#3321)
Thanks for your contribution and we appreciate it a lot. The following
instructions would make your pull request more healthy and more easily
get feedback. If you do not understand some items, don't worry, just
make the pull request and seek help from maintainers.

## Motivation


Support depth estimation algorithm [VPD](https://github.com/wl-zhao/VPD)

## Modification

1. add VPD backbone
2. add VPD decoder head for depth estimation
3. add a new segmentor `DepthEstimator` based on `EncoderDecoder` for
depth estimation
4. add an integrated metric that calculate common metrics in depth
estimation
5. add SiLog loss for depth estimation 
6. add config for VPD 

## BC-breaking (Optional)

Does the modification introduce changes that break the
backward-compatibility of the downstream repos?
If so, please describe how it breaks the compatibility and how the
downstream projects should modify their code to keep compatibility with
this PR.

## Use cases (Optional)

If this PR introduces a new feature, it is better to list some use cases
here, and update the documentation.

## Checklist

1. Pre-commit or other linting tools are used to fix the potential lint
issues.
7. The modification is covered by complete unit tests. If not, please
add more unit test to ensure the correctness.
8. If the modification has potential influence on downstream projects,
this PR should be tested with downstream projects, like MMDet or
MMDet3D.
9. The documentation has been modified accordingly, like docstring or
example tutorials.
2023-09-13 15:31:22 +08:00

393 lines
16 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import logging
from typing import List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.logging import print_log
from mmengine.structures import PixelData
from torch import Tensor
from mmseg.registry import MODELS
from mmseg.structures import SegDataSample
from mmseg.utils import (ConfigType, OptConfigType, OptMultiConfig,
OptSampleList, SampleList, add_prefix)
from ..utils import resize
from .encoder_decoder import EncoderDecoder
@MODELS.register_module()
class DepthEstimator(EncoderDecoder):
"""Encoder Decoder depth estimator.
EncoderDecoder typically consists of backbone, decode_head, auxiliary_head.
Note that auxiliary_head is only used for deep supervision during training,
which could be dumped during inference.
1. The ``loss`` method is used to calculate the loss of model,
which includes two steps: (1) Extracts features to obtain the feature maps
(2) Call the decode head loss function to forward decode head model and
calculate losses.
.. code:: text
loss(): extract_feat() -> _decode_head_forward_train() -> _auxiliary_head_forward_train (optional)
_decode_head_forward_train(): decode_head.loss()
_auxiliary_head_forward_train(): auxiliary_head.loss (optional)
2. The ``predict`` method is used to predict depth estimation results,
which includes two steps: (1) Run inference function to obtain the list of
depth (2) Call post-processing function to obtain list of
``SegDataSample`` including ``pred_depth_map``.
.. code:: text
predict(): inference() -> postprocess_result()
inference(): whole_inference()/slide_inference()
whole_inference()/slide_inference(): encoder_decoder()
encoder_decoder(): extract_feat() -> decode_head.predict()
3. The ``_forward`` method is used to output the tensor by running the model,
which includes two steps: (1) Extracts features to obtain the feature maps
(2)Call the decode head forward function to forward decode head model.
.. code:: text
_forward(): extract_feat() -> _decode_head.forward()
Args:
backbone (ConfigType): The config for the backnone of depth estimator.
decode_head (ConfigType): The config for the decode head of depth estimator.
neck (OptConfigType): The config for the neck of depth estimator.
Defaults to None.
auxiliary_head (OptConfigType): The config for the auxiliary head of
depth estimator. Defaults to None.
train_cfg (OptConfigType): The config for training. Defaults to None.
test_cfg (OptConfigType): The config for testing. Defaults to None.
data_preprocessor (dict, optional): The pre-process config of
:class:`BaseDataPreprocessor`.
pretrained (str, optional): The path for pretrained model.
Defaults to None.
init_cfg (dict, optional): The weight initialized config for
:class:`BaseModule`.
""" # noqa: E501
def __init__(self,
backbone: ConfigType,
decode_head: ConfigType,
neck: OptConfigType = None,
auxiliary_head: OptConfigType = None,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
data_preprocessor: OptConfigType = None,
pretrained: Optional[str] = None,
init_cfg: OptMultiConfig = None):
super().__init__(
backbone=backbone,
decode_head=decode_head,
neck=neck,
auxiliary_head=auxiliary_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
data_preprocessor=data_preprocessor,
pretrained=pretrained,
init_cfg=init_cfg)
def extract_feat(self,
inputs: Tensor,
batch_img_metas: Optional[List[dict]] = None) -> Tensor:
"""Extract features from images."""
if getattr(self.backbone, 'class_embed_select', False) and \
isinstance(batch_img_metas, list) and \
'category_id' in batch_img_metas[0]:
cat_ids = [meta['category_id'] for meta in batch_img_metas]
cat_ids = torch.tensor(cat_ids).to(inputs.device)
inputs = (inputs, cat_ids)
x = self.backbone(inputs)
if self.with_neck:
x = self.neck(x)
return x
def encode_decode(self, inputs: Tensor,
batch_img_metas: List[dict]) -> Tensor:
"""Encode images with backbone and decode into a depth map of the same
size as input."""
x = self.extract_feat(inputs, batch_img_metas)
depth = self.decode_head.predict(x, batch_img_metas, self.test_cfg)
return depth
def _decode_head_forward_train(self, inputs: List[Tensor],
data_samples: SampleList) -> dict:
"""Run forward function and calculate loss for decode head in
training."""
losses = dict()
loss_decode = self.decode_head.loss(inputs, data_samples,
self.train_cfg)
losses.update(add_prefix(loss_decode, 'decode'))
return losses
def _auxiliary_head_forward_train(self, inputs: List[Tensor],
data_samples: SampleList) -> dict:
"""Run forward function and calculate loss for auxiliary head in
training."""
losses = dict()
if isinstance(self.auxiliary_head, nn.ModuleList):
for idx, aux_head in enumerate(self.auxiliary_head):
loss_aux = aux_head.loss(inputs, data_samples, self.train_cfg)
losses.update(add_prefix(loss_aux, f'aux_{idx}'))
else:
loss_aux = self.auxiliary_head.loss(inputs, data_samples,
self.train_cfg)
losses.update(add_prefix(loss_aux, 'aux'))
return losses
def loss(self, inputs: Tensor, data_samples: SampleList) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
inputs (Tensor): Input images.
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
It usually includes information such as `metainfo` and
`gt_depth_map`.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
if data_samples is not None:
batch_img_metas = [
data_sample.metainfo for data_sample in data_samples
]
else:
batch_img_metas = [
dict(
ori_shape=inputs.shape[2:],
img_shape=inputs.shape[2:],
pad_shape=inputs.shape[2:],
padding_size=[0, 0, 0, 0])
] * inputs.shape[0]
x = self.extract_feat(inputs, batch_img_metas)
losses = dict()
loss_decode = self._decode_head_forward_train(x, data_samples)
losses.update(loss_decode)
if self.with_auxiliary_head:
loss_aux = self._auxiliary_head_forward_train(x, data_samples)
losses.update(loss_aux)
return losses
def predict(self,
inputs: Tensor,
data_samples: OptSampleList = None) -> SampleList:
"""Predict results from a batch of inputs and data samples with post-
processing.
Args:
inputs (Tensor): Inputs with shape (N, C, H, W).
data_samples (List[:obj:`SegDataSample`], optional): The seg data
samples. It usually includes information such as `metainfo`
and `gt_depth_map`.
Returns:
list[:obj:`SegDataSample`]: Depth estimation results of the
input images. Each SegDataSample usually contain:
- ``pred_depth_max``(PixelData): Prediction of depth estimation.
"""
if data_samples is not None:
batch_img_metas = [
data_sample.metainfo for data_sample in data_samples
]
else:
batch_img_metas = [
dict(
ori_shape=inputs.shape[2:],
img_shape=inputs.shape[2:],
pad_shape=inputs.shape[2:],
padding_size=[0, 0, 0, 0])
] * inputs.shape[0]
depth = self.inference(inputs, batch_img_metas)
return self.postprocess_result(depth, data_samples)
def _forward(self,
inputs: Tensor,
data_samples: OptSampleList = None) -> Tensor:
"""Network forward process.
Args:
inputs (Tensor): Inputs with shape (N, C, H, W).
data_samples (List[:obj:`SegDataSample`]): The seg
data samples. It usually includes information such
as `metainfo` and `gt_depth_map`.
Returns:
Tensor: Forward output of model without any post-processes.
"""
x = self.extract_feat(inputs)
return self.decode_head.forward(x)
def slide_flip_inference(self, inputs: Tensor,
batch_img_metas: List[dict]) -> Tensor:
"""Inference by sliding-window with overlap and flip.
If h_crop > h_img or w_crop > w_img, the small patch will be used to
decode without padding.
Args:
inputs (tensor): the tensor should have a shape NxCxHxW,
which contains all images in the batch.
batch_img_metas (List[dict]): List of image metainfo where each may
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
'ori_shape', and 'pad_shape'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
Returns:
Tensor: The depth estimation results.
"""
h_stride, w_stride = self.test_cfg.stride
h_crop, w_crop = self.test_cfg.crop_size
batch_size, _, h_img, w_img = inputs.size()
out_channels = self.out_channels
h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1
w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1
preds = inputs.new_zeros((batch_size, out_channels, h_img, w_img))
count_mat = inputs.new_zeros((batch_size, 1, h_img, w_img))
for h_idx in range(h_grids):
for w_idx in range(w_grids):
y1 = h_idx * h_stride
x1 = w_idx * w_stride
y2 = min(y1 + h_crop, h_img)
x2 = min(x1 + w_crop, w_img)
y1 = max(y2 - h_crop, 0)
x1 = max(x2 - w_crop, 0)
crop_img = inputs[:, :, y1:y2, x1:x2]
# change the image shape to patch shape
batch_img_metas[0]['img_shape'] = crop_img.shape[2:]
# the output of encode_decode is depth tensor map
# with shape [N, C, H, W]
crop_depth_map = self.encode_decode(crop_img, batch_img_metas)
# average out the original and flipped prediction
crop_depth_map_flip = self.encode_decode(
crop_img.flip(dims=(3, )), batch_img_metas)
crop_depth_map_flip = crop_depth_map_flip.flip(dims=(3, ))
crop_depth_map = (crop_depth_map + crop_depth_map_flip) / 2.0
preds += F.pad(crop_depth_map,
(int(x1), int(preds.shape[3] - x2), int(y1),
int(preds.shape[2] - y2)))
count_mat[:, :, y1:y2, x1:x2] += 1
assert (count_mat == 0).sum() == 0
depth = preds / count_mat
return depth
def inference(self, inputs: Tensor, batch_img_metas: List[dict]) -> Tensor:
"""Inference with slide/whole style.
Args:
inputs (Tensor): The input image of shape (N, 3, H, W).
batch_img_metas (List[dict]): List of image metainfo where each may
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
'ori_shape', 'pad_shape', and 'padding_size'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
Returns:
Tensor: The depth estimation results.
"""
assert self.test_cfg.get('mode', 'whole') in ['slide', 'whole',
'slide_flip'], \
f'Only "slide", "slide_flip" or "whole" test mode are ' \
f'supported, but got {self.test_cfg["mode"]}.'
ori_shape = batch_img_metas[0]['ori_shape']
if not all(_['ori_shape'] == ori_shape for _ in batch_img_metas):
print_log(
'Image shapes are different in the batch.',
logger='current',
level=logging.WARN)
if self.test_cfg.mode == 'slide':
depth_map = self.slide_inference(inputs, batch_img_metas)
if self.test_cfg.mode == 'slide_flip':
depth_map = self.slide_flip_inference(inputs, batch_img_metas)
else:
depth_map = self.whole_inference(inputs, batch_img_metas)
return depth_map
def postprocess_result(self,
depth: Tensor,
data_samples: OptSampleList = None) -> SampleList:
""" Convert results list to `SegDataSample`.
Args:
depth (Tensor): The depth estimation results.
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
It usually includes information such as `metainfo` and
`gt_depth_map`. Default to None.
Returns:
list[:obj:`SegDataSample`]: Depth estomation results of the
input images. Each SegDataSample usually contain:
- ``pred_depth_map``(PixelData): Prediction of depth estimation.
"""
batch_size, C, H, W = depth.shape
if data_samples is None:
data_samples = [SegDataSample() for _ in range(batch_size)]
only_prediction = True
else:
only_prediction = False
for i in range(batch_size):
if not only_prediction:
img_meta = data_samples[i].metainfo
# remove padding area
if 'img_padding_size' not in img_meta:
padding_size = img_meta.get('padding_size', [0] * 4)
else:
padding_size = img_meta['img_padding_size']
padding_left, padding_right, padding_top, padding_bottom =\
padding_size
# i_depth shape is 1, C, H, W after remove padding
i_depth = depth[i:i + 1, :, padding_top:H - padding_bottom,
padding_left:W - padding_right]
flip = img_meta.get('flip', None)
if flip:
flip_direction = img_meta.get('flip_direction', None)
assert flip_direction in ['horizontal', 'vertical']
if flip_direction == 'horizontal':
i_depth = i_depth.flip(dims=(3, ))
else:
i_depth = i_depth.flip(dims=(2, ))
# resize as original shape
i_depth = resize(
i_depth,
size=img_meta['ori_shape'],
mode='bilinear',
align_corners=self.align_corners,
warning=False).squeeze(0)
else:
i_depth = depth[i]
data_samples[i].set_data(
{'pred_depth_map': PixelData(**{'data': i_depth})})
return data_samples