mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily get feedback. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers. ## Motivation Support depth estimation algorithm [VPD](https://github.com/wl-zhao/VPD) ## Modification 1. add VPD backbone 2. add VPD decoder head for depth estimation 3. add a new segmentor `DepthEstimator` based on `EncoderDecoder` for depth estimation 4. add an integrated metric that calculate common metrics in depth estimation 5. add SiLog loss for depth estimation 6. add config for VPD ## BC-breaking (Optional) Does the modification introduce changes that break the backward-compatibility of the downstream repos? If so, please describe how it breaks the compatibility and how the downstream projects should modify their code to keep compatibility with this PR. ## Use cases (Optional) If this PR introduces a new feature, it is better to list some use cases here, and update the documentation. ## Checklist 1. Pre-commit or other linting tools are used to fix the potential lint issues. 7. The modification is covered by complete unit tests. If not, please add more unit test to ensure the correctness. 8. If the modification has potential influence on downstream projects, this PR should be tested with downstream projects, like MMDet or MMDet3D. 9. The documentation has been modified accordingly, like docstring or example tutorials.
393 lines
16 KiB
Python
393 lines
16 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import logging
|
|
from typing import List, Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from mmengine.logging import print_log
|
|
from mmengine.structures import PixelData
|
|
from torch import Tensor
|
|
|
|
from mmseg.registry import MODELS
|
|
from mmseg.structures import SegDataSample
|
|
from mmseg.utils import (ConfigType, OptConfigType, OptMultiConfig,
|
|
OptSampleList, SampleList, add_prefix)
|
|
from ..utils import resize
|
|
from .encoder_decoder import EncoderDecoder
|
|
|
|
|
|
@MODELS.register_module()
|
|
class DepthEstimator(EncoderDecoder):
|
|
"""Encoder Decoder depth estimator.
|
|
|
|
EncoderDecoder typically consists of backbone, decode_head, auxiliary_head.
|
|
Note that auxiliary_head is only used for deep supervision during training,
|
|
which could be dumped during inference.
|
|
|
|
1. The ``loss`` method is used to calculate the loss of model,
|
|
which includes two steps: (1) Extracts features to obtain the feature maps
|
|
(2) Call the decode head loss function to forward decode head model and
|
|
calculate losses.
|
|
|
|
.. code:: text
|
|
|
|
loss(): extract_feat() -> _decode_head_forward_train() -> _auxiliary_head_forward_train (optional)
|
|
_decode_head_forward_train(): decode_head.loss()
|
|
_auxiliary_head_forward_train(): auxiliary_head.loss (optional)
|
|
|
|
2. The ``predict`` method is used to predict depth estimation results,
|
|
which includes two steps: (1) Run inference function to obtain the list of
|
|
depth (2) Call post-processing function to obtain list of
|
|
``SegDataSample`` including ``pred_depth_map``.
|
|
|
|
.. code:: text
|
|
|
|
predict(): inference() -> postprocess_result()
|
|
inference(): whole_inference()/slide_inference()
|
|
whole_inference()/slide_inference(): encoder_decoder()
|
|
encoder_decoder(): extract_feat() -> decode_head.predict()
|
|
|
|
3. The ``_forward`` method is used to output the tensor by running the model,
|
|
which includes two steps: (1) Extracts features to obtain the feature maps
|
|
(2)Call the decode head forward function to forward decode head model.
|
|
|
|
.. code:: text
|
|
|
|
_forward(): extract_feat() -> _decode_head.forward()
|
|
|
|
Args:
|
|
|
|
backbone (ConfigType): The config for the backnone of depth estimator.
|
|
decode_head (ConfigType): The config for the decode head of depth estimator.
|
|
neck (OptConfigType): The config for the neck of depth estimator.
|
|
Defaults to None.
|
|
auxiliary_head (OptConfigType): The config for the auxiliary head of
|
|
depth estimator. Defaults to None.
|
|
train_cfg (OptConfigType): The config for training. Defaults to None.
|
|
test_cfg (OptConfigType): The config for testing. Defaults to None.
|
|
data_preprocessor (dict, optional): The pre-process config of
|
|
:class:`BaseDataPreprocessor`.
|
|
pretrained (str, optional): The path for pretrained model.
|
|
Defaults to None.
|
|
init_cfg (dict, optional): The weight initialized config for
|
|
:class:`BaseModule`.
|
|
""" # noqa: E501
|
|
|
|
def __init__(self,
|
|
backbone: ConfigType,
|
|
decode_head: ConfigType,
|
|
neck: OptConfigType = None,
|
|
auxiliary_head: OptConfigType = None,
|
|
train_cfg: OptConfigType = None,
|
|
test_cfg: OptConfigType = None,
|
|
data_preprocessor: OptConfigType = None,
|
|
pretrained: Optional[str] = None,
|
|
init_cfg: OptMultiConfig = None):
|
|
super().__init__(
|
|
backbone=backbone,
|
|
decode_head=decode_head,
|
|
neck=neck,
|
|
auxiliary_head=auxiliary_head,
|
|
train_cfg=train_cfg,
|
|
test_cfg=test_cfg,
|
|
data_preprocessor=data_preprocessor,
|
|
pretrained=pretrained,
|
|
init_cfg=init_cfg)
|
|
|
|
def extract_feat(self,
|
|
inputs: Tensor,
|
|
batch_img_metas: Optional[List[dict]] = None) -> Tensor:
|
|
"""Extract features from images."""
|
|
|
|
if getattr(self.backbone, 'class_embed_select', False) and \
|
|
isinstance(batch_img_metas, list) and \
|
|
'category_id' in batch_img_metas[0]:
|
|
cat_ids = [meta['category_id'] for meta in batch_img_metas]
|
|
cat_ids = torch.tensor(cat_ids).to(inputs.device)
|
|
inputs = (inputs, cat_ids)
|
|
|
|
x = self.backbone(inputs)
|
|
if self.with_neck:
|
|
x = self.neck(x)
|
|
return x
|
|
|
|
def encode_decode(self, inputs: Tensor,
|
|
batch_img_metas: List[dict]) -> Tensor:
|
|
"""Encode images with backbone and decode into a depth map of the same
|
|
size as input."""
|
|
x = self.extract_feat(inputs, batch_img_metas)
|
|
depth = self.decode_head.predict(x, batch_img_metas, self.test_cfg)
|
|
|
|
return depth
|
|
|
|
def _decode_head_forward_train(self, inputs: List[Tensor],
|
|
data_samples: SampleList) -> dict:
|
|
"""Run forward function and calculate loss for decode head in
|
|
training."""
|
|
losses = dict()
|
|
loss_decode = self.decode_head.loss(inputs, data_samples,
|
|
self.train_cfg)
|
|
|
|
losses.update(add_prefix(loss_decode, 'decode'))
|
|
return losses
|
|
|
|
def _auxiliary_head_forward_train(self, inputs: List[Tensor],
|
|
data_samples: SampleList) -> dict:
|
|
"""Run forward function and calculate loss for auxiliary head in
|
|
training."""
|
|
losses = dict()
|
|
if isinstance(self.auxiliary_head, nn.ModuleList):
|
|
for idx, aux_head in enumerate(self.auxiliary_head):
|
|
loss_aux = aux_head.loss(inputs, data_samples, self.train_cfg)
|
|
losses.update(add_prefix(loss_aux, f'aux_{idx}'))
|
|
else:
|
|
loss_aux = self.auxiliary_head.loss(inputs, data_samples,
|
|
self.train_cfg)
|
|
losses.update(add_prefix(loss_aux, 'aux'))
|
|
|
|
return losses
|
|
|
|
def loss(self, inputs: Tensor, data_samples: SampleList) -> dict:
|
|
"""Calculate losses from a batch of inputs and data samples.
|
|
|
|
Args:
|
|
inputs (Tensor): Input images.
|
|
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
|
|
It usually includes information such as `metainfo` and
|
|
`gt_depth_map`.
|
|
|
|
Returns:
|
|
dict[str, Tensor]: a dictionary of loss components
|
|
"""
|
|
if data_samples is not None:
|
|
batch_img_metas = [
|
|
data_sample.metainfo for data_sample in data_samples
|
|
]
|
|
else:
|
|
batch_img_metas = [
|
|
dict(
|
|
ori_shape=inputs.shape[2:],
|
|
img_shape=inputs.shape[2:],
|
|
pad_shape=inputs.shape[2:],
|
|
padding_size=[0, 0, 0, 0])
|
|
] * inputs.shape[0]
|
|
|
|
x = self.extract_feat(inputs, batch_img_metas)
|
|
|
|
losses = dict()
|
|
|
|
loss_decode = self._decode_head_forward_train(x, data_samples)
|
|
losses.update(loss_decode)
|
|
|
|
if self.with_auxiliary_head:
|
|
loss_aux = self._auxiliary_head_forward_train(x, data_samples)
|
|
losses.update(loss_aux)
|
|
|
|
return losses
|
|
|
|
def predict(self,
|
|
inputs: Tensor,
|
|
data_samples: OptSampleList = None) -> SampleList:
|
|
"""Predict results from a batch of inputs and data samples with post-
|
|
processing.
|
|
|
|
Args:
|
|
inputs (Tensor): Inputs with shape (N, C, H, W).
|
|
data_samples (List[:obj:`SegDataSample`], optional): The seg data
|
|
samples. It usually includes information such as `metainfo`
|
|
and `gt_depth_map`.
|
|
|
|
Returns:
|
|
list[:obj:`SegDataSample`]: Depth estimation results of the
|
|
input images. Each SegDataSample usually contain:
|
|
|
|
- ``pred_depth_max``(PixelData): Prediction of depth estimation.
|
|
"""
|
|
if data_samples is not None:
|
|
batch_img_metas = [
|
|
data_sample.metainfo for data_sample in data_samples
|
|
]
|
|
else:
|
|
batch_img_metas = [
|
|
dict(
|
|
ori_shape=inputs.shape[2:],
|
|
img_shape=inputs.shape[2:],
|
|
pad_shape=inputs.shape[2:],
|
|
padding_size=[0, 0, 0, 0])
|
|
] * inputs.shape[0]
|
|
|
|
depth = self.inference(inputs, batch_img_metas)
|
|
|
|
return self.postprocess_result(depth, data_samples)
|
|
|
|
def _forward(self,
|
|
inputs: Tensor,
|
|
data_samples: OptSampleList = None) -> Tensor:
|
|
"""Network forward process.
|
|
|
|
Args:
|
|
inputs (Tensor): Inputs with shape (N, C, H, W).
|
|
data_samples (List[:obj:`SegDataSample`]): The seg
|
|
data samples. It usually includes information such
|
|
as `metainfo` and `gt_depth_map`.
|
|
|
|
Returns:
|
|
Tensor: Forward output of model without any post-processes.
|
|
"""
|
|
x = self.extract_feat(inputs)
|
|
return self.decode_head.forward(x)
|
|
|
|
def slide_flip_inference(self, inputs: Tensor,
|
|
batch_img_metas: List[dict]) -> Tensor:
|
|
"""Inference by sliding-window with overlap and flip.
|
|
|
|
If h_crop > h_img or w_crop > w_img, the small patch will be used to
|
|
decode without padding.
|
|
|
|
Args:
|
|
inputs (tensor): the tensor should have a shape NxCxHxW,
|
|
which contains all images in the batch.
|
|
batch_img_metas (List[dict]): List of image metainfo where each may
|
|
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
|
|
'ori_shape', and 'pad_shape'.
|
|
For details on the values of these keys see
|
|
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
|
|
|
|
Returns:
|
|
Tensor: The depth estimation results.
|
|
"""
|
|
|
|
h_stride, w_stride = self.test_cfg.stride
|
|
h_crop, w_crop = self.test_cfg.crop_size
|
|
batch_size, _, h_img, w_img = inputs.size()
|
|
out_channels = self.out_channels
|
|
h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1
|
|
w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1
|
|
preds = inputs.new_zeros((batch_size, out_channels, h_img, w_img))
|
|
count_mat = inputs.new_zeros((batch_size, 1, h_img, w_img))
|
|
for h_idx in range(h_grids):
|
|
for w_idx in range(w_grids):
|
|
y1 = h_idx * h_stride
|
|
x1 = w_idx * w_stride
|
|
y2 = min(y1 + h_crop, h_img)
|
|
x2 = min(x1 + w_crop, w_img)
|
|
y1 = max(y2 - h_crop, 0)
|
|
x1 = max(x2 - w_crop, 0)
|
|
crop_img = inputs[:, :, y1:y2, x1:x2]
|
|
# change the image shape to patch shape
|
|
batch_img_metas[0]['img_shape'] = crop_img.shape[2:]
|
|
# the output of encode_decode is depth tensor map
|
|
# with shape [N, C, H, W]
|
|
crop_depth_map = self.encode_decode(crop_img, batch_img_metas)
|
|
|
|
# average out the original and flipped prediction
|
|
crop_depth_map_flip = self.encode_decode(
|
|
crop_img.flip(dims=(3, )), batch_img_metas)
|
|
crop_depth_map_flip = crop_depth_map_flip.flip(dims=(3, ))
|
|
crop_depth_map = (crop_depth_map + crop_depth_map_flip) / 2.0
|
|
|
|
preds += F.pad(crop_depth_map,
|
|
(int(x1), int(preds.shape[3] - x2), int(y1),
|
|
int(preds.shape[2] - y2)))
|
|
|
|
count_mat[:, :, y1:y2, x1:x2] += 1
|
|
assert (count_mat == 0).sum() == 0
|
|
depth = preds / count_mat
|
|
|
|
return depth
|
|
|
|
def inference(self, inputs: Tensor, batch_img_metas: List[dict]) -> Tensor:
|
|
"""Inference with slide/whole style.
|
|
|
|
Args:
|
|
inputs (Tensor): The input image of shape (N, 3, H, W).
|
|
batch_img_metas (List[dict]): List of image metainfo where each may
|
|
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
|
|
'ori_shape', 'pad_shape', and 'padding_size'.
|
|
For details on the values of these keys see
|
|
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
|
|
|
|
Returns:
|
|
Tensor: The depth estimation results.
|
|
"""
|
|
assert self.test_cfg.get('mode', 'whole') in ['slide', 'whole',
|
|
'slide_flip'], \
|
|
f'Only "slide", "slide_flip" or "whole" test mode are ' \
|
|
f'supported, but got {self.test_cfg["mode"]}.'
|
|
ori_shape = batch_img_metas[0]['ori_shape']
|
|
if not all(_['ori_shape'] == ori_shape for _ in batch_img_metas):
|
|
print_log(
|
|
'Image shapes are different in the batch.',
|
|
logger='current',
|
|
level=logging.WARN)
|
|
if self.test_cfg.mode == 'slide':
|
|
depth_map = self.slide_inference(inputs, batch_img_metas)
|
|
if self.test_cfg.mode == 'slide_flip':
|
|
depth_map = self.slide_flip_inference(inputs, batch_img_metas)
|
|
else:
|
|
depth_map = self.whole_inference(inputs, batch_img_metas)
|
|
|
|
return depth_map
|
|
|
|
def postprocess_result(self,
|
|
depth: Tensor,
|
|
data_samples: OptSampleList = None) -> SampleList:
|
|
""" Convert results list to `SegDataSample`.
|
|
Args:
|
|
depth (Tensor): The depth estimation results.
|
|
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
|
|
It usually includes information such as `metainfo` and
|
|
`gt_depth_map`. Default to None.
|
|
Returns:
|
|
list[:obj:`SegDataSample`]: Depth estomation results of the
|
|
input images. Each SegDataSample usually contain:
|
|
|
|
- ``pred_depth_map``(PixelData): Prediction of depth estimation.
|
|
"""
|
|
batch_size, C, H, W = depth.shape
|
|
|
|
if data_samples is None:
|
|
data_samples = [SegDataSample() for _ in range(batch_size)]
|
|
only_prediction = True
|
|
else:
|
|
only_prediction = False
|
|
|
|
for i in range(batch_size):
|
|
if not only_prediction:
|
|
img_meta = data_samples[i].metainfo
|
|
# remove padding area
|
|
if 'img_padding_size' not in img_meta:
|
|
padding_size = img_meta.get('padding_size', [0] * 4)
|
|
else:
|
|
padding_size = img_meta['img_padding_size']
|
|
padding_left, padding_right, padding_top, padding_bottom =\
|
|
padding_size
|
|
# i_depth shape is 1, C, H, W after remove padding
|
|
i_depth = depth[i:i + 1, :, padding_top:H - padding_bottom,
|
|
padding_left:W - padding_right]
|
|
|
|
flip = img_meta.get('flip', None)
|
|
if flip:
|
|
flip_direction = img_meta.get('flip_direction', None)
|
|
assert flip_direction in ['horizontal', 'vertical']
|
|
if flip_direction == 'horizontal':
|
|
i_depth = i_depth.flip(dims=(3, ))
|
|
else:
|
|
i_depth = i_depth.flip(dims=(2, ))
|
|
|
|
# resize as original shape
|
|
i_depth = resize(
|
|
i_depth,
|
|
size=img_meta['ori_shape'],
|
|
mode='bilinear',
|
|
align_corners=self.align_corners,
|
|
warning=False).squeeze(0)
|
|
else:
|
|
i_depth = depth[i]
|
|
|
|
data_samples[i].set_data(
|
|
{'pred_depth_map': PixelData(**{'data': i_depth})})
|
|
|
|
return data_samples
|