mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
## Motivation Supports inference for ultra-large-scale remote sensing images. ## Modification Add RSImageInference.py in demo. ## Use cases Taking the inference of Vaihingen dataset images using PSPNet as an example, the following settings are required: **img**: Specify the path of the image. **model**: Provide the configuration file for the model. **checkpoint**: Specify the weight file for the model. **out**: Set the output path for the results. **batch_size**: Determine the batch size used during inference. **win_size**: Specify the width and height(512x512) of the sliding window. **stride**: Set the stride(400x400) for sliding the window. **thread(default: 1)**: Specify the number of threads to be used for inference. **Inference device (default: cuda:0)**: Specify the device for inference (e.g., cuda:0 for CPU). ```shell python demo/rs_image_inference.py demo/demo.png projects/pp_mobileseg/configs/pp_mobileseg/pp_mobileseg_mobilenetv3_2x16_80k_ade20k_512x512_tiny.py pp_mobileseg_mobilenetv3_2xb16_3rdparty-tiny_512x512-ade20k-a351ebf5.pth --batch-size 8 --device cpu --thread 2 ``` --------- Co-authored-by: xiexinch <xiexinch@outlook.com>
74 lines
2.4 KiB
Python
74 lines
2.4 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import os.path as osp
|
|
from unittest import TestCase
|
|
|
|
import numpy as np
|
|
from mmengine import ConfigDict, init_default_scope
|
|
from utils import * # noqa: F401, F403
|
|
|
|
from mmseg.apis import RSImage, RSInferencer
|
|
from mmseg.registry import MODELS
|
|
|
|
|
|
class TestRSImage(TestCase):
|
|
|
|
def test_read_whole_image(self):
|
|
init_default_scope('mmseg')
|
|
img_path = osp.join(
|
|
osp.dirname(__file__),
|
|
'../data/pseudo_loveda_dataset/img_dir/0.png')
|
|
rs_image = RSImage(img_path)
|
|
window_size = (16, 16)
|
|
rs_image.create_grids(window_size)
|
|
image_data = rs_image.read(rs_image.grids[0])
|
|
self.assertIsNotNone(image_data)
|
|
|
|
def test_write_image_data(self):
|
|
init_default_scope('mmseg')
|
|
img_path = osp.join(
|
|
osp.dirname(__file__),
|
|
'../data/pseudo_loveda_dataset/img_dir/0.png')
|
|
rs_image = RSImage(img_path)
|
|
window_size = (16, 16)
|
|
rs_image.create_grids(window_size)
|
|
data = np.random.random((16, 16)).astype(np.int8)
|
|
rs_image.write(data, rs_image.grids[0])
|
|
|
|
|
|
class TestRSInferencer(TestCase):
|
|
|
|
def test_read_and_inference(self):
|
|
init_default_scope('mmseg')
|
|
cfg_dict = dict(
|
|
model=dict(
|
|
type='InferExampleModel',
|
|
data_preprocessor=dict(type='SegDataPreProcessor'),
|
|
backbone=dict(type='InferExampleBackbone'),
|
|
decode_head=dict(type='InferExampleHead'),
|
|
test_cfg=dict(mode='whole')),
|
|
test_dataloader=dict(
|
|
dataset=dict(
|
|
type='ExampleDataset',
|
|
pipeline=[
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='LoadAnnotations'),
|
|
dict(type='PackSegInputs')
|
|
])),
|
|
test_pipeline=[
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='LoadAnnotations'),
|
|
dict(type='PackSegInputs')
|
|
])
|
|
cfg = ConfigDict(cfg_dict)
|
|
model = MODELS.build(cfg.model)
|
|
model.cfg = cfg
|
|
inferencer = RSInferencer.from_model(model)
|
|
|
|
img_path = osp.join(
|
|
osp.dirname(__file__),
|
|
'../data/pseudo_loveda_dataset/img_dir/0.png')
|
|
rs_image = RSImage(img_path)
|
|
window_size = (16, 16)
|
|
stride = (16, 16)
|
|
inferencer.run(rs_image, window_size, stride)
|