mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
## Motivation Supports inference for ultra-large-scale remote sensing images. ## Modification Add RSImageInference.py in demo. ## Use cases Taking the inference of Vaihingen dataset images using PSPNet as an example, the following settings are required: **img**: Specify the path of the image. **model**: Provide the configuration file for the model. **checkpoint**: Specify the weight file for the model. **out**: Set the output path for the results. **batch_size**: Determine the batch size used during inference. **win_size**: Specify the width and height(512x512) of the sliding window. **stride**: Set the stride(400x400) for sliding the window. **thread(default: 1)**: Specify the number of threads to be used for inference. **Inference device (default: cuda:0)**: Specify the device for inference (e.g., cuda:0 for CPU). ```shell python demo/rs_image_inference.py demo/demo.png projects/pp_mobileseg/configs/pp_mobileseg/pp_mobileseg_mobilenetv3_2x16_80k_ade20k_512x512_tiny.py pp_mobileseg_mobilenetv3_2xb16_3rdparty-tiny_512x512-ade20k-a351ebf5.pth --batch-size 8 --device cpu --thread 2 ``` --------- Co-authored-by: xiexinch <xiexinch@outlook.com>
39 lines
983 B
Python
39 lines
983 B
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import torch.nn as nn
|
|
|
|
from mmseg.models import EncoderDecoder
|
|
from mmseg.models.decode_heads.decode_head import BaseDecodeHead
|
|
from mmseg.registry import MODELS
|
|
|
|
|
|
@MODELS.register_module(name='InferExampleHead')
|
|
class ExampleDecodeHead(BaseDecodeHead):
|
|
|
|
def __init__(self, num_classes=19, out_channels=None):
|
|
super().__init__(
|
|
3, 3, num_classes=num_classes, out_channels=out_channels)
|
|
|
|
def forward(self, inputs):
|
|
return self.cls_seg(inputs[0])
|
|
|
|
|
|
@MODELS.register_module(name='InferExampleBackbone')
|
|
class ExampleBackbone(nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(3, 3, 3)
|
|
|
|
def init_weights(self, pretrained=None):
|
|
pass
|
|
|
|
def forward(self, x):
|
|
return [self.conv(x)]
|
|
|
|
|
|
@MODELS.register_module(name='InferExampleModel')
|
|
class ExampleModel(EncoderDecoder):
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|