mmsegmentation/tests/test_visualization/test_local_visualizer.py
Peng Lu 743171ddef
[Feature] Support inference and visualization of VPD (#3331)
Thanks for your contribution and we appreciate it a lot. The following
instructions would make your pull request more healthy and more easily
get feedback. If you do not understand some items, don't worry, just
make the pull request and seek help from maintainers.

## Motivation

Support inference and visualization of VPD

## Modification

1. add a new VPD model that does not generate black border in
predictions
2. update `SegLocalVisualizer` to support depth visualization
3. update `MMSegInferencer` to support save predictions of depth
estimation in method `postprocess`

## BC-breaking (Optional)

Does the modification introduce changes that break the
backward-compatibility of the downstream repos?
If so, please describe how it breaks the compatibility and how the
downstream projects should modify their code to keep compatibility with
this PR.

## Use cases (Optional)

Run inference with VPD using the this command

```sh
python demo/image_demo_with_inferencer.py demo/classroom__rgb_00283.jpg vpd_depth --out-dir vis_results
```

The following image will be saved under `vis_results/vis`


![classroom__rgb_00283](https://github.com/open-mmlab/mmsegmentation/assets/26127467/051e8c4b-8f92-495f-8c3e-f249aac888e3)




## Checklist

1. Pre-commit or other linting tools are used to fix the potential lint
issues.
4. The modification is covered by complete unit tests. If not, please
add more unit test to ensure the correctness.
5. If the modification has potential influence on downstream projects,
this PR should be tested with downstream projects, like MMDet or
MMDet3D.
6. The documentation has been modified accordingly, like docstring or
example tutorials.
2023-09-18 20:27:24 +08:00

214 lines
8.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os
import os.path as osp
import tempfile
from unittest import TestCase
import cv2
import mmcv
import numpy as np
import torch
from mmengine.structures import PixelData
from mmseg.structures import SegDataSample
from mmseg.visualization import SegLocalVisualizer
class TestSegLocalVisualizer(TestCase):
def test_add_datasample(self):
h = 10
w = 12
num_class = 2
out_file = 'out_file'
image = np.random.randint(0, 256, size=(h, w, 3)).astype('uint8')
# test gt_sem_seg
gt_sem_seg_data = dict(data=torch.randint(0, num_class, (1, h, w)))
gt_sem_seg = PixelData(**gt_sem_seg_data)
def test_add_datasample_forward(gt_sem_seg):
data_sample = SegDataSample()
data_sample.gt_sem_seg = gt_sem_seg
with tempfile.TemporaryDirectory() as tmp_dir:
seg_local_visualizer = SegLocalVisualizer(
vis_backends=[dict(type='LocalVisBackend')],
save_dir=tmp_dir)
seg_local_visualizer.dataset_meta = dict(
classes=('background', 'foreground'),
palette=[[120, 120, 120], [6, 230, 230]])
# test out_file
seg_local_visualizer.add_datasample(out_file, image,
data_sample)
assert os.path.exists(
osp.join(tmp_dir, 'vis_data', 'vis_image',
out_file + '_0.png'))
drawn_img = cv2.imread(
osp.join(tmp_dir, 'vis_data', 'vis_image',
out_file + '_0.png'))
assert drawn_img.shape == (h, w, 3)
# test gt_instances and pred_instances
pred_sem_seg_data = dict(
data=torch.randint(0, num_class, (1, h, w)))
pred_sem_seg = PixelData(**pred_sem_seg_data)
data_sample.pred_sem_seg = pred_sem_seg
seg_local_visualizer.add_datasample(out_file, image,
data_sample)
self._assert_image_and_shape(
osp.join(tmp_dir, 'vis_data', 'vis_image',
out_file + '_0.png'), (h, w * 2, 3))
seg_local_visualizer.add_datasample(
out_file, image, data_sample, draw_gt=False)
self._assert_image_and_shape(
osp.join(tmp_dir, 'vis_data', 'vis_image',
out_file + '_0.png'), (h, w, 3))
if torch.cuda.is_available():
test_add_datasample_forward(gt_sem_seg.cuda())
test_add_datasample_forward(gt_sem_seg)
def test_cityscapes_add_datasample(self):
h = 128
w = 256
num_class = 19
out_file = 'out_file_cityscapes'
image = mmcv.imread(
osp.join(
osp.dirname(__file__),
'../data/pseudo_cityscapes_dataset/leftImg8bit/val/frankfurt/frankfurt_000000_000294_leftImg8bit.png' # noqa
),
'color')
sem_seg = mmcv.imread(
osp.join(
osp.dirname(__file__),
'../data/pseudo_cityscapes_dataset/gtFine/val/frankfurt/frankfurt_000000_000294_gtFine_labelTrainIds.png' # noqa
),
'unchanged')
sem_seg = torch.unsqueeze(torch.from_numpy(sem_seg), 0)
gt_sem_seg_data = dict(data=sem_seg)
gt_sem_seg = PixelData(**gt_sem_seg_data)
def test_cityscapes_add_datasample_forward(gt_sem_seg):
data_sample = SegDataSample()
data_sample.gt_sem_seg = gt_sem_seg
with tempfile.TemporaryDirectory() as tmp_dir:
seg_local_visualizer = SegLocalVisualizer(
vis_backends=[dict(type='LocalVisBackend')],
save_dir=tmp_dir)
seg_local_visualizer.dataset_meta = dict(
classes=('road', 'sidewalk', 'building', 'wall', 'fence',
'pole', 'traffic light', 'traffic sign',
'vegetation', 'terrain', 'sky', 'person', 'rider',
'car', 'truck', 'bus', 'train', 'motorcycle',
'bicycle'),
palette=[[128, 64, 128], [244, 35, 232], [70, 70, 70],
[102, 102, 156], [190, 153, 153], [153, 153, 153],
[250, 170, 30], [220, 220, 0], [107, 142, 35],
[152, 251, 152], [70, 130, 180], [220, 20, 60],
[255, 0, 0], [0, 0, 142], [0, 0, 70],
[0, 60, 100], [0, 80, 100], [0, 0, 230],
[119, 11, 32]])
# test out_file
seg_local_visualizer.add_datasample(
out_file,
image,
data_sample,
out_file=osp.join(tmp_dir, 'test.png'))
self._assert_image_and_shape(
osp.join(tmp_dir, 'test.png'), (h, w, 3))
# test gt_instances and pred_instances
pred_sem_seg_data = dict(
data=torch.randint(0, num_class, (1, h, w)))
pred_sem_seg = PixelData(**pred_sem_seg_data)
data_sample.pred_sem_seg = pred_sem_seg
# test draw prediction with gt
seg_local_visualizer.add_datasample(out_file, image,
data_sample)
self._assert_image_and_shape(
osp.join(tmp_dir, 'vis_data', 'vis_image',
out_file + '_0.png'), (h, w * 2, 3))
# test draw prediction without gt
seg_local_visualizer.add_datasample(
out_file, image, data_sample, draw_gt=False)
self._assert_image_and_shape(
osp.join(tmp_dir, 'vis_data', 'vis_image',
out_file + '_0.png'), (h, w, 3))
if torch.cuda.is_available():
test_cityscapes_add_datasample_forward(gt_sem_seg.cuda())
test_cityscapes_add_datasample_forward(gt_sem_seg)
def _assert_image_and_shape(self, out_file, out_shape):
assert os.path.exists(out_file)
drawn_img = cv2.imread(out_file)
assert drawn_img.shape == out_shape
def test_add_datasample_depth(self):
h = 10
w = 12
out_file = 'out_file'
image = np.random.randint(0, 256, size=(h, w, 3)).astype('uint8')
# test gt_depth_map
gt_depth_map = PixelData(data=torch.rand(1, h, w))
def test_add_datasample_forward_depth(gt_depth_map):
data_sample = SegDataSample()
data_sample.gt_depth_map = gt_depth_map
with tempfile.TemporaryDirectory() as tmp_dir:
seg_local_visualizer = SegLocalVisualizer(
vis_backends=[dict(type='LocalVisBackend')],
save_dir=tmp_dir)
seg_local_visualizer.dataset_meta = dict(
classes=('background', 'foreground'),
palette=[[120, 120, 120], [6, 230, 230]])
# test out_file
seg_local_visualizer.add_datasample(out_file, image,
data_sample)
assert os.path.exists(
osp.join(tmp_dir, 'vis_data', 'vis_image',
out_file + '_0.png'))
drawn_img = cv2.imread(
osp.join(tmp_dir, 'vis_data', 'vis_image',
out_file + '_0.png'))
assert drawn_img.shape == (h * 2, w, 3)
# test gt_instances and pred_instances
pred_depth_map = PixelData(data=torch.rand(1, h, w))
data_sample.pred_depth_map = pred_depth_map
seg_local_visualizer.add_datasample(out_file, image,
data_sample)
self._assert_image_and_shape(
osp.join(tmp_dir, 'vis_data', 'vis_image',
out_file + '_0.png'), (h * 2, w * 2, 3))
seg_local_visualizer.add_datasample(
out_file, image, data_sample, draw_gt=False)
self._assert_image_and_shape(
osp.join(tmp_dir, 'vis_data', 'vis_image',
out_file + '_0.png'), (h * 2, w, 3))
if torch.cuda.is_available():
test_add_datasample_forward_depth(gt_depth_map.cuda())
test_add_datasample_forward_depth(gt_depth_map)