## Support `HieraSeg` interface on `cityscapes` ## Motivation Support `HieraSeg` interface on cityscapes dataset Paper link : https://ieeexplore.ieee.org/document/9878466/ ``` @article{li2022deep, title={Deep Hierarchical Semantic Segmentation}, author={Li, Liulei and Zhou, Tianfei and Wang, Wenguan and Li, Jianwu and Yang, Yi}, journal={CVPR}, year={2022} } ``` ## Modification Add `HieraSeg_Projects` on `projects/` Add `sep_aspp_contrast_head` decoder head. Add `HieraSeg` config. Add `hiera_loss`, `hiera_triplet_loss_cityscape`, `tree_triplet_loss`
HieraSeg
Support Deep Hierarchical Semantic Segmentation
interface on cityscapes
Description
Author: AI-Tianlong
This project implements HieraSeg
inference in the cityscapes
dataset
Usage
Prerequisites
- Python 3.8
- PyTorch 1.6 or higher
- MMSegmentation v1.0.0rc3
- mmcv v2.0.0rc3
- mmengine
Dataset preparing
preparing cityscapes
dataset like this structure
Testing commands
please put hieraseg_deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024_20230112_125023-bc59a3d1.pth
to mmsegmentation/checkpoints
Multi-GPUs Test
# --tta optional, multi-scale test, need mmengine >=0.4.0
bash tools/dist_test.sh [configs] [model weights] [number of gpu] --tta
Example
bash tools/dist_test.sh projects/HieraSeg_project/configs/hieraseg/hieraseg_deeplabv3plus_r101-d8_4xb2-80l_cityscapes-512x1024.py checkpoints/hieraseg_deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024_20230112_125023-bc59a3d1.pth 2 --tta
Results
Cityscapes
Method | Backbone | Crop Size | mIoU | mIoU (ms+flip) | config | model |
---|---|---|---|---|---|---|
DeeplabV3+ | R-101-D8 | 512x1024 | 81.61 | 82.71 | config | model |
Citation
This project is modified from qhanghu/HSSN_pytorch
@article{li2022deep,
title={Deep Hierarchical Semantic Segmentation},
author={Li, Liulei and Zhou, Tianfei and Wang, Wenguan and Li, Jianwu and Yang, Yi},
journal={CVPR},
year={2022}
}
Checklist
-
Milestone 1: PR-ready, and acceptable to be one of the
projects/
.-
Finish the code
-
Basic docstrings & proper citation
-
Test-time correctness
-
A full README
-
-
Milestone 2: Indicates a successful model implementation.
- Training-time correctness
-
Milestone 3: Good to be a part of our core package!
-
Type hints and docstrings
-
Unit tests
-
Code polishing
-
Metafile.yml
-
-
Move your modules into the core package following the codebase's file hierarchy structure.
-
Refactor your modules into the core package following the codebase's file hierarchy structure.