mmsegmentation/configs/pspnet
MengzhangLI 8cf333c901
[Fix] Update correct `In Collection` in metafile of each configs. (#1239)
* change md2yml file

* update metafile

* update twins In Collection automatically

* fix twins metafile

* fix twins metafile

* all metafile use value of Method

* update collect name

* update collect name

* fix some typo

* fix FCN D6

* change JPU to FastFCN

* fix some typos in DNLNet, NonLocalNet, SETR, Segmenter, STDC, FastSCNN

* fix typo in stdc

* fix typo in DNLNet and UNet

* fix NonLocalNet typo
2022-02-23 18:00:28 +08:00
..
README.md [Feature] Support iSAID aerial dataset. (#1115) 2022-02-17 19:07:32 +08:00
pspnet.yml [Fix] Update correct `In Collection` in metafile of each configs. (#1239) 2022-02-23 18:00:28 +08:00
pspnet_r18-d8_4x4_512x512_80k_potsdam.py [Feature] Support ISPRS Potsdam Dataset. (#1097) 2022-01-18 14:15:15 +08:00
pspnet_r18-d8_4x4_512x512_80k_vaihingen.py [Feature] Support ISPRS Vaihingen Dataset. (#1171) 2022-01-22 20:27:51 +08:00
pspnet_r18-d8_4x4_896x896_80k_isaid.py [Feature] Support iSAID aerial dataset. (#1115) 2022-02-17 19:07:32 +08:00
pspnet_r18-d8_512x512_80k_loveda.py [Feature] Support LoveDA dataset (#1028) 2021-11-24 19:41:19 +08:00
pspnet_r18-d8_512x1024_80k_cityscapes.py Add more models (#316) 2020-12-29 17:56:06 -08:00
pspnet_r18-d8_769x769_80k_cityscapes.py Add more models (#316) 2020-12-29 17:56:06 -08:00
pspnet_r18b-d8_512x1024_80k_cityscapes.py Add more models (#316) 2020-12-29 17:56:06 -08:00
pspnet_r18b-d8_769x769_80k_cityscapes.py Add more models (#316) 2020-12-29 17:56:06 -08:00
pspnet_r50-d8_4x4_512x512_80k_potsdam.py [Feature] Support ISPRS Potsdam Dataset. (#1097) 2022-01-18 14:15:15 +08:00
pspnet_r50-d8_4x4_512x512_80k_vaihingen.py [Feature] Support ISPRS Vaihingen Dataset. (#1171) 2022-01-22 20:27:51 +08:00
pspnet_r50-d8_4x4_896x896_80k_isaid.py [Feature] Support iSAID aerial dataset. (#1115) 2022-02-17 19:07:32 +08:00
pspnet_r50-d8_480x480_40k_pascal_context.py Add support for Pascal Context 59 classes (#459) 2021-04-19 21:20:54 -07:00
pspnet_r50-d8_480x480_40k_pascal_context_59.py Add support for Pascal Context 59 classes (#459) 2021-04-19 21:20:54 -07:00
pspnet_r50-d8_480x480_80k_pascal_context.py Add support for Pascal Context 59 classes (#459) 2021-04-19 21:20:54 -07:00
pspnet_r50-d8_480x480_80k_pascal_context_59.py Add support for Pascal Context 59 classes (#459) 2021-04-19 21:20:54 -07:00
pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k.py support coco stuff-10k/164k (#625) 2021-09-22 20:48:08 +08:00
pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k.py support coco stuff-10k/164k (#625) 2021-09-22 20:48:08 +08:00
pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k.py support coco stuff-10k/164k (#625) 2021-09-22 20:48:08 +08:00
pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k.py support coco stuff-10k/164k (#625) 2021-09-22 20:48:08 +08:00
pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k.py support coco stuff-10k/164k (#625) 2021-09-22 20:48:08 +08:00
pspnet_r50-d8_512x512_20k_voc12aug.py init commit 2020-07-10 02:39:01 +08:00
pspnet_r50-d8_512x512_40k_voc12aug.py init commit 2020-07-10 02:39:01 +08:00
pspnet_r50-d8_512x512_80k_ade20k.py [Bug fix] Fixed ADE20k test (#359) 2021-01-24 02:17:59 -08:00
pspnet_r50-d8_512x512_80k_loveda.py [Feature] Support LoveDA dataset (#1028) 2021-11-24 19:41:19 +08:00
pspnet_r50-d8_512x512_160k_ade20k.py [Bug fix] Fixed ADE20k test (#359) 2021-01-24 02:17:59 -08:00
pspnet_r50-d8_512x1024_40k_cityscapes.py init commit 2020-07-10 02:39:01 +08:00
pspnet_r50-d8_512x1024_40k_dark.py [Feature] Support dark dataset test (#815) 2021-08-28 11:51:05 -07:00
pspnet_r50-d8_512x1024_40k_night_driving.py [Feature] Support dark dataset test (#815) 2021-08-28 11:51:05 -07:00
pspnet_r50-d8_512x1024_80k_cityscapes.py init commit 2020-07-10 02:39:01 +08:00
pspnet_r50-d8_512x1024_80k_dark.py [Feature] Support dark dataset test (#815) 2021-08-28 11:51:05 -07:00
pspnet_r50-d8_512x1024_80k_night_driving.py [Feature] Support dark dataset test (#815) 2021-08-28 11:51:05 -07:00
pspnet_r50-d8_769x769_40k_cityscapes.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
pspnet_r50-d8_769x769_80k_cityscapes.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
pspnet_r50b-d8_512x1024_80k_cityscapes.py Add more models (#316) 2020-12-29 17:56:06 -08:00
pspnet_r50b-d8_769x769_80k_cityscapes.py Add more models (#316) 2020-12-29 17:56:06 -08:00
pspnet_r101-d8_4x4_512x512_80k_potsdam.py [Feature] Support ISPRS Potsdam Dataset. (#1097) 2022-01-18 14:15:15 +08:00
pspnet_r101-d8_4x4_512x512_80k_vaihingen.py [Feature] Support ISPRS Vaihingen Dataset. (#1171) 2022-01-22 20:27:51 +08:00
pspnet_r101-d8_480x480_40k_pascal_context.py Add Pascal Context to mmsegmentation (#133) 2020-09-22 14:56:13 +08:00
pspnet_r101-d8_480x480_40k_pascal_context_59.py Add support for Pascal Context 59 classes (#459) 2021-04-19 21:20:54 -07:00
pspnet_r101-d8_480x480_80k_pascal_context.py Add Pascal Context to mmsegmentation (#133) 2020-09-22 14:56:13 +08:00
pspnet_r101-d8_480x480_80k_pascal_context_59.py Add support for Pascal Context 59 classes (#459) 2021-04-19 21:20:54 -07:00
pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k.py support coco stuff-10k/164k (#625) 2021-09-22 20:48:08 +08:00
pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k.py support coco stuff-10k/164k (#625) 2021-09-22 20:48:08 +08:00
pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k.py support coco stuff-10k/164k (#625) 2021-09-22 20:48:08 +08:00
pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k.py support coco stuff-10k/164k (#625) 2021-09-22 20:48:08 +08:00
pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k.py support coco stuff-10k/164k (#625) 2021-09-22 20:48:08 +08:00
pspnet_r101-d8_512x512_20k_voc12aug.py init commit 2020-07-10 02:39:01 +08:00
pspnet_r101-d8_512x512_40k_voc12aug.py init commit 2020-07-10 02:39:01 +08:00
pspnet_r101-d8_512x512_80k_ade20k.py init commit 2020-07-10 02:39:01 +08:00
pspnet_r101-d8_512x512_80k_loveda.py [Feature] Support LoveDA dataset (#1028) 2021-11-24 19:41:19 +08:00
pspnet_r101-d8_512x512_160k_ade20k.py init commit 2020-07-10 02:39:01 +08:00
pspnet_r101-d8_512x1024_40k_cityscapes.py init commit 2020-07-10 02:39:01 +08:00
pspnet_r101-d8_512x1024_40k_dark.py [Feature] Support dark dataset test (#815) 2021-08-28 11:51:05 -07:00
pspnet_r101-d8_512x1024_40k_night_driving.py [Feature] Support dark dataset test (#815) 2021-08-28 11:51:05 -07:00
pspnet_r101-d8_512x1024_80k_cityscapes.py init commit 2020-07-10 02:39:01 +08:00
pspnet_r101-d8_769x769_40k_cityscapes.py init commit 2020-07-10 02:39:01 +08:00
pspnet_r101-d8_769x769_80k_cityscapes.py init commit 2020-07-10 02:39:01 +08:00
pspnet_r101-d8_fp16_512x1024_80k_cityscapes.py [Fix] Remove `fp16` folder in `configs`. (#1031) 2021-11-15 19:14:57 +08:00
pspnet_r101b-d8_512x1024_80k_cityscapes.py Add more models (#316) 2020-12-29 17:56:06 -08:00
pspnet_r101b-d8_512x1024_80k_dark.py [Feature] Support dark dataset test (#815) 2021-08-28 11:51:05 -07:00
pspnet_r101b-d8_512x1024_80k_night_driving.py [Feature] Support dark dataset test (#815) 2021-08-28 11:51:05 -07:00
pspnet_r101b-d8_769x769_80k_cityscapes.py Add more models (#316) 2020-12-29 17:56:06 -08:00

README.md

PSPNet

Pyramid Scene Parsing Network

Introduction

Official Repo

Code Snippet

Abstract

Scene parsing is challenging for unrestricted open vocabulary and diverse scenes. In this paper, we exploit the capability of global context information by different-region-based context aggregation through our pyramid pooling module together with the proposed pyramid scene parsing network (PSPNet). Our global prior representation is effective to produce good quality results on the scene parsing task, while PSPNet provides a superior framework for pixel-level prediction tasks. The proposed approach achieves state-of-the-art performance on various datasets. It came first in ImageNet scene parsing challenge 2016, PASCAL VOC 2012 benchmark and Cityscapes benchmark. A single PSPNet yields new record of mIoU accuracy 85.4% on PASCAL VOC 2012 and accuracy 80.2% on Cityscapes.

Citation

@inproceedings{zhao2017pspnet,
  title={Pyramid Scene Parsing Network},
  author={Zhao, Hengshuang and Shi, Jianping and Qi, Xiaojuan and Wang, Xiaogang and Jia, Jiaya},
  booktitle={CVPR},
  year={2017}
}

Results and models

Cityscapes

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
PSPNet R-50-D8 512x1024 40000 6.1 4.07 77.85 79.18 config model | log
PSPNet R-101-D8 512x1024 40000 9.6 2.68 78.34 79.74 config model | log
PSPNet R-50-D8 769x769 40000 6.9 1.76 78.26 79.88 config model | log
PSPNet R-101-D8 769x769 40000 10.9 1.15 79.08 80.28 config model | log
PSPNet R-18-D8 512x1024 80000 1.7 15.71 74.87 76.04 config model | log
PSPNet R-50-D8 512x1024 80000 - - 78.55 79.79 config model | log
PSPNet R-101-D8 512x1024 80000 - - 79.76 81.01 config model | log
PSPNet (FP16) R-101-D8 512x1024 80000 5.34 8.77 79.46 - config model | log
PSPNet R-18-D8 769x769 80000 1.9 6.20 75.90 77.86 config model | log
PSPNet R-50-D8 769x769 80000 - - 79.59 80.69 config model | log
PSPNet R-101-D8 769x769 80000 - - 79.77 81.06 config model | log
PSPNet R-18b-D8 512x1024 80000 1.5 16.28 74.23 75.79 config model | log
PSPNet R-50b-D8 512x1024 80000 6.0 4.30 78.22 79.46 config model | log
PSPNet R-101b-D8 512x1024 80000 9.5 2.76 79.69 80.79 config model | log
PSPNet R-18b-D8 769x769 80000 1.7 6.41 74.92 76.90 config model | log
PSPNet R-50b-D8 769x769 80000 6.8 1.88 78.50 79.96 config model | log
PSPNet R-101b-D8 769x769 80000 10.8 1.17 78.87 80.04 config model | log

ADE20K

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
PSPNet R-50-D8 512x512 80000 8.5 23.53 41.13 41.94 config model | log
PSPNet R-101-D8 512x512 80000 12 15.30 43.57 44.35 config model | log
PSPNet R-50-D8 512x512 160000 - - 42.48 43.44 config model | log
PSPNet R-101-D8 512x512 160000 - - 44.39 45.35 config model | log

Pascal VOC 2012 + Aug

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
PSPNet R-50-D8 512x512 20000 6.1 23.59 76.78 77.61 config model | log
PSPNet R-101-D8 512x512 20000 9.6 15.02 78.47 79.25 config model | log
PSPNet R-50-D8 512x512 40000 - - 77.29 78.48 config model | log
PSPNet R-101-D8 512x512 40000 - - 78.52 79.57 config model | log

Pascal Context

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
PSPNet R-101-D8 480x480 40000 8.8 9.68 46.60 47.78 config model | log
PSPNet R-101-D8 480x480 80000 - - 46.03 47.15 config model | log

Pascal Context 59

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
PSPNet R-101-D8 480x480 40000 - - 52.02 53.54 config model | log
PSPNet R-101-D8 480x480 80000 - - 52.47 53.99 config model | log

Dark Zurich and Nighttime Driving

We support evaluation results on these two datasets using models above trained on Cityscapes training set.

Method Backbone Training Dataset Test Dataset mIoU config evaluation checkpoint
PSPNet R-50-D8 Cityscapes Training set Dark Zurich 10.91 config model | log
PSPNet R-50-D8 Cityscapes Training set Nighttime Driving 23.02 config model | log
PSPNet R-50-D8 Cityscapes Training set Cityscapes Validation set 77.85 config model | log
PSPNet R-101-D8 Cityscapes Training set Dark Zurich 10.16 config model | log
PSPNet R-101-D8 Cityscapes Training set Nighttime Driving 20.25 config model | log
PSPNet R-101-D8 Cityscapes Training set Cityscapes Validation set 78.34 config model | log
PSPNet R-101b-D8 Cityscapes Training set Dark Zurich 15.54 config model | log
PSPNet R-101b-D8 Cityscapes Training set Nighttime Driving 22.25 config model | log
PSPNet R-101b-D8 Cityscapes Training set Cityscapes Validation set 79.69 config model | log

COCO-Stuff 10k

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
PSPNet R-50-D8 512x512 20000 9.6 20.5 35.69 36.62 config model | log
PSPNet R-101-D8 512x512 20000 13.2 11.1 37.26 38.52 config model | log
PSPNet R-50-D8 512x512 40000 - - 36.33 37.24 config model | log
PSPNet R-101-D8 512x512 40000 - - 37.76 38.86 config model | log

COCO-Stuff 164k

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
PSPNet R-50-D8 512x512 80000 9.6 20.5 38.80 39.19 config model | log
PSPNet R-101-D8 512x512 80000 13.2 11.1 40.34 40.79 config model | log
PSPNet R-50-D8 512x512 160000 - - 39.64 39.97 config model | log
PSPNet R-101-D8 512x512 160000 - - 41.28 41.66 config model | log
PSPNet R-50-D8 512x512 320000 - - 40.53 40.75 config model | log
PSPNet R-101-D8 512x512 320000 - - 41.95 42.42 config model | log

LoveDA

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
PSPNet R-18-D8 512x512 80000 1.45 26.87 48.62 47.57 config model | log
PSPNet R-50-D8 512x512 80000 6.14 6.60 50.46 50.19 config model | log
PSPNet R-101-D8 512x512 80000 9.61 4.58 51.86 51.34 config model | log

Potsdam

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
PSPNet R-18-D8 512x512 80000 1.50 85.12 77.09 78.30 config model | log
PSPNet R-50-D8 512x512 80000 6.14 30.21 78.12 78.98 config model | log
PSPNet R-101-D8 512x512 80000 9.61 19.40 78.62 79.47 config model | log

Vaihingen

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
PSPNet R-18-D8 512x512 80000 1.45 85.06 71.46 73.36 config model | log
PSPNet R-50-D8 512x512 80000 6.14 30.29 72.36 73.75 config model | log
PSPNet R-101-D8 512x512 80000 9.61 19.97 72.61 74.18 config model | log

iSAID

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
PSPNet R-18-D8 896x896 80000 4.52 26.91 60.22 61.25 config model | log
PSPNet R-50-D8 896x896 80000 16.58 8.88 65.36 66.48 config model | log

Note: