mmsegmentation/configs/_base_/datasets/isaid.py

55 lines
1.7 KiB
Python

# dataset settings
dataset_type = 'iSAIDDataset'
data_root = 'data/iSAID'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
"""
This crop_size setting is followed by the implementation of
`PointFlow: Flowing Semantics Through Points for Aerial Image
Segmentation <https://arxiv.org/pdf/2103.06564.pdf>`_.
"""
crop_size = (896, 896)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='RandomResize', scale=(896, 896), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=(896, 896), keep_ratio=True),
dict(type='PackSegInputs')
]
train_dataloader = dict(
batch_size=4,
num_workers=4,
persistent_workers=True,
sampler=dict(type='InfiniteSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(
img_path='img_dir/train', seg_map_path='ann_dir/train'),
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=4,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(type='IoUMetric', metrics=['mIoU'])
test_evaluator = val_evaluator