mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
115 lines
4.8 KiB
YAML
115 lines
4.8 KiB
YAML
Collections:
|
|
- Name: BiSeNetV2
|
|
License: Apache License 2.0
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
Paper:
|
|
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic
|
|
Segmentation'
|
|
URL: https://arxiv.org/abs/2004.02147
|
|
README: configs/bisenetv2/README.md
|
|
Frameworks:
|
|
- PyTorch
|
|
Models:
|
|
- Name: bisenetv2_fcn_4xb4-160k_cityscapes-1024x1024
|
|
In Collection: BiSeNetV2
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 73.21
|
|
mIoU(ms+flip): 75.74
|
|
Config: configs/bisenetv2/bisenetv2_fcn_4xb4-160k_cityscapes-1024x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 16
|
|
Architecture:
|
|
- BiSeNetV2
|
|
- BiSeNetV2
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 7.64
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes_20210902_015551-bcf10f09.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes_20210902_015551.log.json
|
|
Paper:
|
|
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic
|
|
Segmentation'
|
|
URL: https://arxiv.org/abs/2004.02147
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545
|
|
Framework: PyTorch
|
|
- Name: bisenetv2_fcn_4xb4-ohem-160k_cityscapes-1024x1024
|
|
In Collection: BiSeNetV2
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 73.57
|
|
mIoU(ms+flip): 75.8
|
|
Config: configs/bisenetv2/bisenetv2_fcn_4xb4-ohem-160k_cityscapes-1024x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 16
|
|
Architecture:
|
|
- BiSeNetV2
|
|
- BiSeNetV2
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 7.64
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes_20210902_112947-5f8103b4.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes_20210902_112947.log.json
|
|
Paper:
|
|
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic
|
|
Segmentation'
|
|
URL: https://arxiv.org/abs/2004.02147
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545
|
|
Framework: PyTorch
|
|
- Name: bisenetv2_fcn_4xb8-160k_cityscapes-1024x1024
|
|
In Collection: BiSeNetV2
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 75.76
|
|
mIoU(ms+flip): 77.79
|
|
Config: configs/bisenetv2/bisenetv2_fcn_4xb8-160k_cityscapes-1024x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 32
|
|
Architecture:
|
|
- BiSeNetV2
|
|
- BiSeNetV2
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 15.05
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes_20210903_000032-e1a2eed6.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes_20210903_000032.log.json
|
|
Paper:
|
|
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic
|
|
Segmentation'
|
|
URL: https://arxiv.org/abs/2004.02147
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545
|
|
Framework: PyTorch
|
|
- Name: bisenetv2_fcn_4xb4-amp-160k_cityscapes-1024x1024
|
|
In Collection: BiSeNetV2
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 73.07
|
|
mIoU(ms+flip): 75.13
|
|
Config: configs/bisenetv2/bisenetv2_fcn_4xb4-amp-160k_cityscapes-1024x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 16
|
|
Architecture:
|
|
- BiSeNetV2
|
|
- BiSeNetV2
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 5.77
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes_20210902_045942-b979777b.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes_20210902_045942.log.json
|
|
Paper:
|
|
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic
|
|
Segmentation'
|
|
URL: https://arxiv.org/abs/2004.02147
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545
|
|
Framework: PyTorch
|