400 lines
16 KiB
YAML
400 lines
16 KiB
YAML
Collections:
|
|
- Name: ISANet
|
|
License: Apache License 2.0
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- ADE20K
|
|
- Pascal VOC 2012 + Aug
|
|
Paper:
|
|
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1907.12273
|
|
README: configs/isanet/README.md
|
|
Frameworks:
|
|
- PyTorch
|
|
Models:
|
|
- Name: isanet_r50-d8_4xb2-40k_cityscapes-512x1024
|
|
In Collection: ISANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.49
|
|
mIoU(ms+flip): 79.44
|
|
Config: configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-512x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-50-D8
|
|
- ISANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 5.869
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_40k_cityscapes/isanet_r50-d8_512x1024_40k_cityscapes_20210901_054739-981bd763.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_40k_cityscapes/isanet_r50-d8_512x1024_40k_cityscapes_20210901_054739.log.json
|
|
Paper:
|
|
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1907.12273
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
|
|
Framework: PyTorch
|
|
- Name: isanet_r50-d8_4xb2-80k_cityscapes-512x1024
|
|
In Collection: ISANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.68
|
|
mIoU(ms+flip): 80.25
|
|
Config: configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-512x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-50-D8
|
|
- ISANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 5.869
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_80k_cityscapes/isanet_r50-d8_512x1024_80k_cityscapes_20210901_074202-89384497.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_80k_cityscapes/isanet_r50-d8_512x1024_80k_cityscapes_20210901_074202.log.json
|
|
Paper:
|
|
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1907.12273
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
|
|
Framework: PyTorch
|
|
- Name: isanet_r50-d8_4xb2-40k_cityscapes-769x769
|
|
In Collection: ISANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.7
|
|
mIoU(ms+flip): 80.28
|
|
Config: configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-769x769.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-50-D8
|
|
- ISANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 6.759
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_40k_cityscapes/isanet_r50-d8_769x769_40k_cityscapes_20210903_050200-4ae7e65b.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_40k_cityscapes/isanet_r50-d8_769x769_40k_cityscapes_20210903_050200.log.json
|
|
Paper:
|
|
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1907.12273
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
|
|
Framework: PyTorch
|
|
- Name: isanet_r50-d8_4xb2-80k_cityscapes-769x769
|
|
In Collection: ISANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.29
|
|
mIoU(ms+flip): 80.53
|
|
Config: configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-769x769.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-50-D8
|
|
- ISANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 6.759
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_80k_cityscapes/isanet_r50-d8_769x769_80k_cityscapes_20210903_101126-99b54519.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_80k_cityscapes/isanet_r50-d8_769x769_80k_cityscapes_20210903_101126.log.json
|
|
Paper:
|
|
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1907.12273
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
|
|
Framework: PyTorch
|
|
- Name: isanet_r101-d8_4xb2-40k_cityscapes-512x1024
|
|
In Collection: ISANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.58
|
|
mIoU(ms+flip): 81.05
|
|
Config: configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-512x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-101-D8
|
|
- ISANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 9.425
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_40k_cityscapes/isanet_r101-d8_512x1024_40k_cityscapes_20210901_145553-293e6bd6.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_40k_cityscapes/isanet_r101-d8_512x1024_40k_cityscapes_20210901_145553.log.json
|
|
Paper:
|
|
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1907.12273
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
|
|
Framework: PyTorch
|
|
- Name: isanet_r101-d8_4xb2-80k_cityscapes-512x1024
|
|
In Collection: ISANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 80.32
|
|
mIoU(ms+flip): 81.58
|
|
Config: configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-512x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-101-D8
|
|
- ISANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 9.425
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_80k_cityscapes/isanet_r101-d8_512x1024_80k_cityscapes_20210901_145243-5b99c9b2.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_80k_cityscapes/isanet_r101-d8_512x1024_80k_cityscapes_20210901_145243.log.json
|
|
Paper:
|
|
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1907.12273
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
|
|
Framework: PyTorch
|
|
- Name: isanet_r101-d8_4xb2-40k_cityscapes-769x769
|
|
In Collection: ISANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.68
|
|
mIoU(ms+flip): 80.95
|
|
Config: configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-769x769.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-101-D8
|
|
- ISANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 10.815
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_40k_cityscapes/isanet_r101-d8_769x769_40k_cityscapes_20210903_111320-509e7224.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_40k_cityscapes/isanet_r101-d8_769x769_40k_cityscapes_20210903_111320.log.json
|
|
Paper:
|
|
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1907.12273
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
|
|
Framework: PyTorch
|
|
- Name: isanet_r101-d8_4xb2-80k_cityscapes-769x769
|
|
In Collection: ISANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 80.61
|
|
mIoU(ms+flip): 81.59
|
|
Config: configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-769x769.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-101-D8
|
|
- ISANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 10.815
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_80k_cityscapes/isanet_r101-d8_769x769_80k_cityscapes_20210903_111319-24f71dfa.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_80k_cityscapes/isanet_r101-d8_769x769_80k_cityscapes_20210903_111319.log.json
|
|
Paper:
|
|
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1907.12273
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
|
|
Framework: PyTorch
|
|
- Name: isanet_r50-d8_4xb4-80k_ade20k-512x512
|
|
In Collection: ISANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 41.12
|
|
mIoU(ms+flip): 42.35
|
|
Config: configs/isanet/isanet_r50-d8_4xb4-80k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-50-D8
|
|
- ISANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 9.0
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_80k_ade20k/isanet_r50-d8_512x512_80k_ade20k_20210903_124557-6ed83a0c.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_80k_ade20k/isanet_r50-d8_512x512_80k_ade20k_20210903_124557.log.json
|
|
Paper:
|
|
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1907.12273
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
|
|
Framework: PyTorch
|
|
- Name: isanet_r50-d8_4xb4-160k_ade20k-512x512
|
|
In Collection: ISANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 42.59
|
|
mIoU(ms+flip): 43.07
|
|
Config: configs/isanet/isanet_r50-d8_4xb4-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-50-D8
|
|
- ISANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 9.0
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_160k_ade20k/isanet_r50-d8_512x512_160k_ade20k_20210903_104850-f752d0a3.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_160k_ade20k/isanet_r50-d8_512x512_160k_ade20k_20210903_104850.log.json
|
|
Paper:
|
|
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1907.12273
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
|
|
Framework: PyTorch
|
|
- Name: isanet_r101-d8_4xb4-80k_ade20k-512x512
|
|
In Collection: ISANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 43.51
|
|
mIoU(ms+flip): 44.38
|
|
Config: configs/isanet/isanet_r101-d8_4xb4-80k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-101-D8
|
|
- ISANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 12.562
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_80k_ade20k/isanet_r101-d8_512x512_80k_ade20k_20210903_162056-68b235c2.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_80k_ade20k/isanet_r101-d8_512x512_80k_ade20k_20210903_162056.log.json
|
|
Paper:
|
|
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1907.12273
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
|
|
Framework: PyTorch
|
|
- Name: isanet_r101-d8_4xb4-160k_ade20k-512x512
|
|
In Collection: ISANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 43.8
|
|
mIoU(ms+flip): 45.4
|
|
Config: configs/isanet/isanet_r101-d8_4xb4-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-101-D8
|
|
- ISANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 12.562
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_160k_ade20k/isanet_r101-d8_512x512_160k_ade20k_20210903_211431-a7879dcd.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_160k_ade20k/isanet_r101-d8_512x512_160k_ade20k_20210903_211431.log.json
|
|
Paper:
|
|
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1907.12273
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
|
|
Framework: PyTorch
|
|
- Name: isanet_r50-d8_4xb4-20k_voc12aug-512x512
|
|
In Collection: ISANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 76.78
|
|
mIoU(ms+flip): 77.79
|
|
Config: configs/isanet/isanet_r50-d8_4xb4-20k_voc12aug-512x512.py
|
|
Metadata:
|
|
Training Data: Pascal VOC 2012 + Aug
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-50-D8
|
|
- ISANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 5.9
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_20k_voc12aug/isanet_r50-d8_512x512_20k_voc12aug_20210901_164838-79d59b80.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_20k_voc12aug/isanet_r50-d8_512x512_20k_voc12aug_20210901_164838.log.json
|
|
Paper:
|
|
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1907.12273
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
|
|
Framework: PyTorch
|
|
- Name: isanet_r50-d8_4xb4-40k_voc12aug-512x512
|
|
In Collection: ISANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 76.2
|
|
mIoU(ms+flip): 77.22
|
|
Config: configs/isanet/isanet_r50-d8_4xb4-40k_voc12aug-512x512.py
|
|
Metadata:
|
|
Training Data: Pascal VOC 2012 + Aug
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-50-D8
|
|
- ISANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 5.9
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_40k_voc12aug/isanet_r50-d8_512x512_40k_voc12aug_20210901_151349-7d08a54e.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_40k_voc12aug/isanet_r50-d8_512x512_40k_voc12aug_20210901_151349.log.json
|
|
Paper:
|
|
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1907.12273
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
|
|
Framework: PyTorch
|
|
- Name: isanet_r101-d8_4xb4-20k_voc12aug-512x512
|
|
In Collection: ISANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 78.46
|
|
mIoU(ms+flip): 79.16
|
|
Config: configs/isanet/isanet_r101-d8_4xb4-20k_voc12aug-512x512.py
|
|
Metadata:
|
|
Training Data: Pascal VOC 2012 + Aug
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-101-D8
|
|
- ISANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 9.465
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_20k_voc12aug/isanet_r101-d8_512x512_20k_voc12aug_20210901_115805-3ccbf355.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_20k_voc12aug/isanet_r101-d8_512x512_20k_voc12aug_20210901_115805.log.json
|
|
Paper:
|
|
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1907.12273
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
|
|
Framework: PyTorch
|
|
- Name: isanet_r101-d8_4xb4-40k_voc12aug-512x512
|
|
In Collection: ISANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 78.12
|
|
mIoU(ms+flip): 79.04
|
|
Config: configs/isanet/isanet_r101-d8_4xb4-40k_voc12aug-512x512.py
|
|
Metadata:
|
|
Training Data: Pascal VOC 2012 + Aug
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-101-D8
|
|
- ISANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 9.465
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_40k_voc12aug/isanet_r101-d8_512x512_40k_voc12aug_20210901_145814-bc71233b.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_40k_voc12aug/isanet_r101-d8_512x512_40k_voc12aug_20210901_145814.log.json
|
|
Paper:
|
|
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1907.12273
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
|
|
Framework: PyTorch
|