mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
## Motivation Support SAN for Open-Vocabulary Semantic Segmentation Paper: [Side Adapter Network for Open-Vocabulary Semantic Segmentation](https://arxiv.org/abs/2302.12242) official Code: [SAN](https://github.com/MendelXu/SAN) ## Modification - Added the parameters of backbone vit for implementing the image encoder of CLIP. - Added text encoder code. - Added segmentor multimodel encoder-decoder code for open-vocabulary semantic segmentation. - Added SideAdapterNetwork decode head code. - Added config files for train and inference. - Added tools for converting pretrained models. - Added loss implementation for mask classification model, such as SAN, Maskformer and remove dependency on mmdetection. - Added test units for text encoder, multimodel encoder-decoder, san decode head and hungarian_assigner. ## Use cases ### Convert Models **pretrained SAN model** The official pretrained model can be downloaded from [san_clip_vit_b_16.pth](https://huggingface.co/Mendel192/san/blob/main/san_vit_b_16.pth) and [san_clip_vit_large_14.pth](https://huggingface.co/Mendel192/san/blob/main/san_vit_large_14.pth). Use tools/model_converters/san2mmseg.py to convert offcial model into mmseg style. `python tools/model_converters/san2mmseg.py <MODEL_PATH> <OUTPUT_PATH>` **pretrained CLIP model** Use the CLIP model provided by openai to train SAN. The CLIP model can be download from [ViT-B-16.pt](https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt) and [ViT-L-14-336px.pt](https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt). Use tools/model_converters/clip2mmseg.py to convert model into mmseg style. `python tools/model_converters/clip2mmseg.py <MODEL_PATH> <OUTPUT_PATH>` ### Inference test san_vit-base-16 model on coco-stuff164k dataset `python tools/test.py ./configs/san/san-vit-b16_coco-stuff164k-640x640.py <TRAINED_MODEL_PATH>` ### Train test san_vit-base-16 model on coco-stuff164k dataset `python tools/train.py ./configs/san/san-vit-b16_coco-stuff164k-640x640.py --cfg-options model.pretrained=<PRETRAINED_MODEL_PATH>` ## Comparision Results ### Train on COCO-Stuff164k | | | mIoU | mAcc | pAcc | | --------------- | ----- | ----- | ----- | ----- | | san-vit-base16 | official | 41.93 | 56.73 | 67.69 | | | mmseg | 41.93 | 56.84 | 67.84 | | san-vit-large14 | official | 45.57 | 59.52 | 69.76 | | | mmseg | 45.78 | 59.61 | 69.21 | ### Evaluate on Pascal Context | | | mIoU | mAcc | pAcc | | --------------- | ----- | ----- | ----- | ----- | | san-vit-base16 | official | 54.05 | 72.96 | 77.77 | | | mmseg | 54.04 | 73.74 | 77.71 | | san-vit-large14 | official | 57.53 | 77.56 | 78.89 | | | mmseg | 56.89 | 76.96 | 78.74 | ### Evaluate on Voc12Aug | | | mIoU | mAcc | pAcc | | --------------- | ----- | ----- | ----- | ----- | | san-vit-base16 | official | 93.86 | 96.61 | 97.11 | | | mmseg | 94.58 | 97.01 | 97.38 | | san-vit-large14 | official | 95.17 | 97.61 | 97.63 | | | mmseg | 95.58 | 97.75 | 97.79 | --------- Co-authored-by: CastleDream <35064479+CastleDream@users.noreply.github.com> Co-authored-by: yeedrag <46050186+yeedrag@users.noreply.github.com> Co-authored-by: Yang-ChangHui <71805205+Yang-Changhui@users.noreply.github.com> Co-authored-by: Xu CAO <49406546+SheffieldCao@users.noreply.github.com> Co-authored-by: xiexinch <xiexinch@outlook.com> Co-authored-by: 小飞猪 <106524776+ooooo-create@users.noreply.github.com>
110 lines
3.5 KiB
Python
110 lines
3.5 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
from typing import List
|
|
|
|
PREDEFINED_TEMPLATES = {
|
|
'imagenet': [
|
|
'a bad photo of a {}.',
|
|
'a photo of many {}.',
|
|
'a sculpture of a {}.',
|
|
'a photo of the hard to see {}.',
|
|
'a low resolution photo of the {}.',
|
|
'a rendering of a {}.',
|
|
'graffiti of a {}.',
|
|
'a bad photo of the {}.',
|
|
'a cropped photo of the {}.',
|
|
'a tattoo of a {}.',
|
|
'the embroidered {}.',
|
|
'a photo of a hard to see {}.',
|
|
'a bright photo of a {}.',
|
|
'a photo of a clean {}.',
|
|
'a photo of a dirty {}.',
|
|
'a dark photo of the {}.',
|
|
'a drawing of a {}.',
|
|
'a photo of my {}.',
|
|
'the plastic {}.',
|
|
'a photo of the cool {}.',
|
|
'a close-up photo of a {}.',
|
|
'a black and white photo of the {}.',
|
|
'a painting of the {}.',
|
|
'a painting of a {}.',
|
|
'a pixelated photo of the {}.',
|
|
'a sculpture of the {}.',
|
|
'a bright photo of the {}.',
|
|
'a cropped photo of a {}.',
|
|
'a plastic {}.',
|
|
'a photo of the dirty {}.',
|
|
'a jpeg corrupted photo of a {}.',
|
|
'a blurry photo of the {}.',
|
|
'a photo of the {}.',
|
|
'a good photo of the {}.',
|
|
'a rendering of the {}.',
|
|
'a {} in a video game.',
|
|
'a photo of one {}.',
|
|
'a doodle of a {}.',
|
|
'a close-up photo of the {}.',
|
|
'a photo of a {}.',
|
|
'the origami {}.',
|
|
'the {} in a video game.',
|
|
'a sketch of a {}.',
|
|
'a doodle of the {}.',
|
|
'a origami {}.',
|
|
'a low resolution photo of a {}.',
|
|
'the toy {}.',
|
|
'a rendition of the {}.',
|
|
'a photo of the clean {}.',
|
|
'a photo of a large {}.',
|
|
'a rendition of a {}.',
|
|
'a photo of a nice {}.',
|
|
'a photo of a weird {}.',
|
|
'a blurry photo of a {}.',
|
|
'a cartoon {}.',
|
|
'art of a {}.',
|
|
'a sketch of the {}.',
|
|
'a embroidered {}.',
|
|
'a pixelated photo of a {}.',
|
|
'itap of the {}.',
|
|
'a jpeg corrupted photo of the {}.',
|
|
'a good photo of a {}.',
|
|
'a plushie {}.',
|
|
'a photo of the nice {}.',
|
|
'a photo of the small {}.',
|
|
'a photo of the weird {}.',
|
|
'the cartoon {}.',
|
|
'art of the {}.',
|
|
'a drawing of the {}.',
|
|
'a photo of the large {}.',
|
|
'a black and white photo of a {}.',
|
|
'the plushie {}.',
|
|
'a dark photo of a {}.',
|
|
'itap of a {}.',
|
|
'graffiti of the {}.',
|
|
'a toy {}.',
|
|
'itap of my {}.',
|
|
'a photo of a cool {}.',
|
|
'a photo of a small {}.',
|
|
'a tattoo of the {}.',
|
|
],
|
|
'vild': [
|
|
'a photo of a {}.',
|
|
'This is a photo of a {}',
|
|
'There is a {} in the scene',
|
|
'There is the {} in the scene',
|
|
'a photo of a {} in the scene',
|
|
'a photo of a small {}.',
|
|
'a photo of a medium {}.',
|
|
'a photo of a large {}.',
|
|
'This is a photo of a small {}.',
|
|
'This is a photo of a medium {}.',
|
|
'This is a photo of a large {}.',
|
|
'There is a small {} in the scene.',
|
|
'There is a medium {} in the scene.',
|
|
'There is a large {} in the scene.',
|
|
],
|
|
}
|
|
|
|
|
|
def get_predefined_templates(template_set_name: str) -> List[str]:
|
|
if template_set_name not in PREDEFINED_TEMPLATES:
|
|
raise ValueError(f'Template set {template_set_name} not found')
|
|
return PREDEFINED_TEMPLATES[template_set_name]
|