mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
## Motivation Support SAN for Open-Vocabulary Semantic Segmentation Paper: [Side Adapter Network for Open-Vocabulary Semantic Segmentation](https://arxiv.org/abs/2302.12242) official Code: [SAN](https://github.com/MendelXu/SAN) ## Modification - Added the parameters of backbone vit for implementing the image encoder of CLIP. - Added text encoder code. - Added segmentor multimodel encoder-decoder code for open-vocabulary semantic segmentation. - Added SideAdapterNetwork decode head code. - Added config files for train and inference. - Added tools for converting pretrained models. - Added loss implementation for mask classification model, such as SAN, Maskformer and remove dependency on mmdetection. - Added test units for text encoder, multimodel encoder-decoder, san decode head and hungarian_assigner. ## Use cases ### Convert Models **pretrained SAN model** The official pretrained model can be downloaded from [san_clip_vit_b_16.pth](https://huggingface.co/Mendel192/san/blob/main/san_vit_b_16.pth) and [san_clip_vit_large_14.pth](https://huggingface.co/Mendel192/san/blob/main/san_vit_large_14.pth). Use tools/model_converters/san2mmseg.py to convert offcial model into mmseg style. `python tools/model_converters/san2mmseg.py <MODEL_PATH> <OUTPUT_PATH>` **pretrained CLIP model** Use the CLIP model provided by openai to train SAN. The CLIP model can be download from [ViT-B-16.pt](https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt) and [ViT-L-14-336px.pt](https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt). Use tools/model_converters/clip2mmseg.py to convert model into mmseg style. `python tools/model_converters/clip2mmseg.py <MODEL_PATH> <OUTPUT_PATH>` ### Inference test san_vit-base-16 model on coco-stuff164k dataset `python tools/test.py ./configs/san/san-vit-b16_coco-stuff164k-640x640.py <TRAINED_MODEL_PATH>` ### Train test san_vit-base-16 model on coco-stuff164k dataset `python tools/train.py ./configs/san/san-vit-b16_coco-stuff164k-640x640.py --cfg-options model.pretrained=<PRETRAINED_MODEL_PATH>` ## Comparision Results ### Train on COCO-Stuff164k | | | mIoU | mAcc | pAcc | | --------------- | ----- | ----- | ----- | ----- | | san-vit-base16 | official | 41.93 | 56.73 | 67.69 | | | mmseg | 41.93 | 56.84 | 67.84 | | san-vit-large14 | official | 45.57 | 59.52 | 69.76 | | | mmseg | 45.78 | 59.61 | 69.21 | ### Evaluate on Pascal Context | | | mIoU | mAcc | pAcc | | --------------- | ----- | ----- | ----- | ----- | | san-vit-base16 | official | 54.05 | 72.96 | 77.77 | | | mmseg | 54.04 | 73.74 | 77.71 | | san-vit-large14 | official | 57.53 | 77.56 | 78.89 | | | mmseg | 56.89 | 76.96 | 78.74 | ### Evaluate on Voc12Aug | | | mIoU | mAcc | pAcc | | --------------- | ----- | ----- | ----- | ----- | | san-vit-base16 | official | 93.86 | 96.61 | 97.11 | | | mmseg | 94.58 | 97.01 | 97.38 | | san-vit-large14 | official | 95.17 | 97.61 | 97.63 | | | mmseg | 95.58 | 97.75 | 97.79 | --------- Co-authored-by: CastleDream <35064479+CastleDream@users.noreply.github.com> Co-authored-by: yeedrag <46050186+yeedrag@users.noreply.github.com> Co-authored-by: Yang-ChangHui <71805205+Yang-Changhui@users.noreply.github.com> Co-authored-by: Xu CAO <49406546+SheffieldCao@users.noreply.github.com> Co-authored-by: xiexinch <xiexinch@outlook.com> Co-authored-by: 小飞猪 <106524776+ooooo-create@users.noreply.github.com>
164 lines
6.0 KiB
Python
164 lines
6.0 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os.path as osp
|
|
from collections import OrderedDict
|
|
|
|
import mmengine
|
|
import torch
|
|
from mmengine.runner import CheckpointLoader
|
|
|
|
|
|
def convert_vitlayer(paras):
|
|
new_para_name = ''
|
|
if paras[0] == 'ln_1':
|
|
new_para_name = '.'.join(['ln1'] + paras[1:])
|
|
elif paras[0] == 'attn':
|
|
new_para_name = '.'.join(['attn.attn'] + paras[1:])
|
|
elif paras[0] == 'ln_2':
|
|
new_para_name = '.'.join(['ln2'] + paras[1:])
|
|
elif paras[0] == 'mlp':
|
|
if paras[1] == 'c_fc':
|
|
new_para_name = '.'.join(['ffn.layers.0.0'] + paras[-1:])
|
|
else:
|
|
new_para_name = '.'.join(['ffn.layers.1'] + paras[-1:])
|
|
else:
|
|
print(f'Wrong for {paras}')
|
|
return new_para_name
|
|
|
|
|
|
def convert_translayer(paras):
|
|
new_para_name = ''
|
|
if paras[0] == 'attn':
|
|
new_para_name = '.'.join(['attentions.0.attn'] + paras[1:])
|
|
elif paras[0] == 'ln_1':
|
|
new_para_name = '.'.join(['norms.0'] + paras[1:])
|
|
elif paras[0] == 'ln_2':
|
|
new_para_name = '.'.join(['norms.1'] + paras[1:])
|
|
elif paras[0] == 'mlp':
|
|
if paras[1] == 'c_fc':
|
|
new_para_name = '.'.join(['ffns.0.layers.0.0'] + paras[2:])
|
|
elif paras[1] == 'c_proj':
|
|
new_para_name = '.'.join(['ffns.0.layers.1'] + paras[2:])
|
|
else:
|
|
print(f'Wrong for {paras}')
|
|
else:
|
|
print(f'Wrong for {paras}')
|
|
return new_para_name
|
|
|
|
|
|
def convert_key_name(ckpt, visual_split):
|
|
new_ckpt = OrderedDict()
|
|
for k, v in ckpt.items():
|
|
key_list = k.split('.')
|
|
if key_list[0] == 'visual':
|
|
new_transform_name = 'image_encoder'
|
|
if key_list[1] == 'class_embedding':
|
|
new_name = '.'.join([new_transform_name, 'cls_token'])
|
|
elif key_list[1] == 'positional_embedding':
|
|
new_name = '.'.join([new_transform_name, 'pos_embed'])
|
|
elif key_list[1] == 'conv1':
|
|
new_name = '.'.join([
|
|
new_transform_name, 'patch_embed.projection', key_list[2]
|
|
])
|
|
elif key_list[1] == 'ln_pre':
|
|
new_name = '.'.join(
|
|
[new_transform_name, key_list[1], key_list[2]])
|
|
elif key_list[1] == 'transformer':
|
|
new_layer_name = 'layers'
|
|
layer_index = key_list[3]
|
|
paras = key_list[4:]
|
|
if int(layer_index) < visual_split:
|
|
new_para_name = convert_vitlayer(paras)
|
|
new_name = '.'.join([
|
|
new_transform_name, new_layer_name, layer_index,
|
|
new_para_name
|
|
])
|
|
else:
|
|
new_para_name = convert_translayer(paras)
|
|
new_transform_name = 'decode_head.rec_with_attnbias'
|
|
new_layer_name = 'layers'
|
|
layer_index = str(int(layer_index) - visual_split)
|
|
new_name = '.'.join([
|
|
new_transform_name, new_layer_name, layer_index,
|
|
new_para_name
|
|
])
|
|
elif key_list[1] == 'proj':
|
|
new_name = 'decode_head.rec_with_attnbias.proj.weight'
|
|
elif key_list[1] == 'ln_post':
|
|
new_name = k.replace('visual', 'decode_head.rec_with_attnbias')
|
|
else:
|
|
print(f'pop parameter: {k}')
|
|
continue
|
|
else:
|
|
text_encoder_name = 'text_encoder'
|
|
if key_list[0] == 'transformer':
|
|
layer_name = 'transformer'
|
|
layer_index = key_list[2]
|
|
paras = key_list[3:]
|
|
new_para_name = convert_translayer(paras)
|
|
new_name = '.'.join([
|
|
text_encoder_name, layer_name, layer_index, new_para_name
|
|
])
|
|
elif key_list[0] in [
|
|
'positional_embedding', 'text_projection', 'bg_embed',
|
|
'attn_mask', 'logit_scale', 'token_embedding', 'ln_final'
|
|
]:
|
|
new_name = 'text_encoder.' + k
|
|
else:
|
|
print(f'pop parameter: {k}')
|
|
continue
|
|
new_ckpt[new_name] = v
|
|
|
|
return new_ckpt
|
|
|
|
|
|
def convert_tensor(ckpt):
|
|
cls_token = ckpt['image_encoder.cls_token']
|
|
new_cls_token = cls_token.unsqueeze(0).unsqueeze(0)
|
|
ckpt['image_encoder.cls_token'] = new_cls_token
|
|
pos_embed = ckpt['image_encoder.pos_embed']
|
|
new_pos_embed = pos_embed.unsqueeze(0)
|
|
ckpt['image_encoder.pos_embed'] = new_pos_embed
|
|
proj_weight = ckpt['decode_head.rec_with_attnbias.proj.weight']
|
|
new_proj_weight = proj_weight.transpose(1, 0)
|
|
ckpt['decode_head.rec_with_attnbias.proj.weight'] = new_proj_weight
|
|
return ckpt
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(
|
|
description='Convert keys in timm pretrained vit models to '
|
|
'MMSegmentation style.')
|
|
parser.add_argument('src', help='src model path or url')
|
|
# The dst path must be a full path of the new checkpoint.
|
|
parser.add_argument('dst', help='save path')
|
|
args = parser.parse_args()
|
|
|
|
if any([s in args.src for s in ['B-16', 'b16', 'base_patch16']]):
|
|
visual_split = 9
|
|
elif any([s in args.src for s in ['L-14', 'l14', 'large_patch14']]):
|
|
visual_split = 18
|
|
else:
|
|
print('Make sure the clip model is ViT-B/16 or ViT-L/14!')
|
|
visual_split = -1
|
|
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')
|
|
if isinstance(checkpoint, torch.jit.RecursiveScriptModule):
|
|
state_dict = checkpoint.state_dict()
|
|
else:
|
|
if 'state_dict' in checkpoint:
|
|
# timm checkpoint
|
|
state_dict = checkpoint['state_dict']
|
|
elif 'model' in checkpoint:
|
|
# deit checkpoint
|
|
state_dict = checkpoint['model']
|
|
else:
|
|
state_dict = checkpoint
|
|
weight = convert_key_name(state_dict, visual_split)
|
|
weight = convert_tensor(weight)
|
|
mmengine.mkdir_or_exist(osp.dirname(args.dst))
|
|
torch.save(weight, args.dst)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|