mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
* [Fix]: Fix lint * [WIP]: Add mae seg config * [Feature]: Add MAE seg * [Fix]: Fix mae dataset img scale bug * [Fix]: Fix lint * [Feature]: Change mae config to mae_segmentation's config * [Feature]: Add interpolate pe when loading * [Fix]: Fix pos_embed not used bug * [Fix]: Fix lint * [Fix]: Init rel pos embed with zeros * [Fix]: Fix lint * [Fix]: Change the type name of backbone to MAE * [Fix]: Delete ade20k_512x512.py * [Fix]: Use mmseg provided ade20k.py * [Fix]: Change 1 sample per gpu to 2 samples per gpu * [Fix]: Fix conflict * [Refactor]: Use the TransformerEncoderLayer of BEiT * [Feature]: Add UT * [Fix]: Change the default value of qv bias to False * [Fix]: Initialize relative pos table with zeros * [Fix]: Delete redundant code in mae * [Fix]: Fix lint * [Fix]: Rename qkv_bias to qv_bias * [Fix]: Add docstring to weight_init of MAEAttention * [Refactor]: Delete qv_bias param * [Fix]: Add reference to fix_init_weight * [Fix]: Fix lint * [Fix]: Delete extra crop size * [Refactor]: Rename mae * [Fix]: Set bias to True * [Fix]: Delete redundant params * [Fix]: Fix lint * [Fix]: Fix UT * [Fix]: Add resize abs pos embed * [Fix]: Fix UT * [Refactor]: Use build layer * [Fix]: Add licsense and fix docstring * [Fix]: Fix docstring * [Feature]: Add README metafile * [Fix]: Change 640 to 512 * [Fix]: Fix README * fix readme of MAE Co-authored-by: MengzhangLI <mcmong@pku.edu.cn>
24 lines
730 B
YAML
24 lines
730 B
YAML
Models:
|
|
- Name: upernet_mae-base_fp16_8x2_512x512_160k_ade20k
|
|
In Collection: UperNet
|
|
Metadata:
|
|
backbone: ViT-B
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 140.06
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP16
|
|
resolution: (512,512)
|
|
Training Memory (GB): 9.96
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 48.13
|
|
mIoU(ms+flip): 48.7
|
|
Config: configs/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752-f92a2975.pth
|