65 lines
2.0 KiB
Python
65 lines
2.0 KiB
Python
import pytest
|
|
import torch
|
|
|
|
from mmseg.models.backbones import SwinTransformer
|
|
|
|
|
|
def test_swin_transformer():
|
|
"""Test Swin Transformer backbone."""
|
|
|
|
with pytest.raises(AssertionError):
|
|
# We only support 'official' or 'mmcls' for this arg.
|
|
model = SwinTransformer(pretrain_style='swin')
|
|
|
|
with pytest.raises(TypeError):
|
|
# Pretrained arg must be str or None.
|
|
model = SwinTransformer(pretrained=123)
|
|
|
|
with pytest.raises(AssertionError):
|
|
# Because swin use non-overlapping patch embed, so the stride of patch
|
|
# embed must be equal to patch size.
|
|
model = SwinTransformer(strides=(2, 2, 2, 2), patch_size=4)
|
|
|
|
# Test absolute position embedding
|
|
temp = torch.randn((1, 3, 224, 224))
|
|
model = SwinTransformer(pretrain_img_size=224, use_abs_pos_embed=True)
|
|
model.init_weights()
|
|
model(temp)
|
|
|
|
# Test patch norm
|
|
model = SwinTransformer(patch_norm=False)
|
|
model(temp)
|
|
|
|
# Test pretrain img size
|
|
model = SwinTransformer(pretrain_img_size=(224, ))
|
|
|
|
with pytest.raises(AssertionError):
|
|
model = SwinTransformer(pretrain_img_size=(224, 224, 224))
|
|
|
|
# Test normal inference
|
|
temp = torch.randn((1, 3, 512, 512))
|
|
model = SwinTransformer()
|
|
outs = model(temp)
|
|
assert outs[0].shape == (1, 96, 128, 128)
|
|
assert outs[1].shape == (1, 192, 64, 64)
|
|
assert outs[2].shape == (1, 384, 32, 32)
|
|
assert outs[3].shape == (1, 768, 16, 16)
|
|
|
|
# Test abnormal inference
|
|
temp = torch.randn((1, 3, 511, 511))
|
|
model = SwinTransformer()
|
|
outs = model(temp)
|
|
assert outs[0].shape == (1, 96, 128, 128)
|
|
assert outs[1].shape == (1, 192, 64, 64)
|
|
assert outs[2].shape == (1, 384, 32, 32)
|
|
assert outs[3].shape == (1, 768, 16, 16)
|
|
|
|
# Test abnormal inference
|
|
temp = torch.randn((1, 3, 112, 137))
|
|
model = SwinTransformer()
|
|
outs = model(temp)
|
|
assert outs[0].shape == (1, 96, 28, 35)
|
|
assert outs[1].shape == (1, 192, 14, 18)
|
|
assert outs[2].shape == (1, 384, 7, 9)
|
|
assert outs[3].shape == (1, 768, 4, 5)
|