mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily get feedback. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers. ## Motivation [Add semantic label to the segmentation visualization results 分割可视化结果中加上语义信息 #154](https://github.com/open-mmlab/OpenMMLabCamp/discussions/154) corresponding issue: [跑出来结果之后怎么在结果图片上获取各个语意部分的区域信息? #2578](https://github.com/open-mmlab/mmsegmentation/issues/2578) ## Modification 1. mmseg/apis/inference.py, add withLabels in visualizer.add_datasample call, to indicate whether add semantic label 2. mmseg/visualization/local_visualizer.py, add semantic labels by opencv; modify the demo comment description 3. mmseg/utils/__init__.py, add bdd100k datasets to test local_visualizer.py **Current visualize result** <img width="637" alt="image" src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/6ef6ce02-1d82-46f8-bde9-a1d69ff62df8"> **Add semantic label** <img width="637" alt="image" src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/00716679-b43a-4794-8499-9bfecdb4b78b"> ## Test results **tests/test_visualization/test_local_visualizer.py** test results:(MMSegmentation/tests/data/pseudo_cityscapes_dataset/leftImg8bit/val/frankfurt/frankfurt_000000_000294_leftImg8bit.png) <img width="643" alt="image" src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/6792b7d2-2512-4ea9-8500-1a7ed2d5e0dc"> **demo/inference_demo.ipynb** test results: <img width="966" alt="image" src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/dfc0147e-fb1a-490a-b6ff-a8b209352d9b"> ----- ## Drawbacks config opencv thickness according to image size <img width="496" alt="image" src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/0a54d72c-62b1-422c-89ae-69dc753fe0fc"> I have no idea of dealing with label overlapping for the time being
221 lines
7.8 KiB
Python
221 lines
7.8 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import warnings
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
from typing import Optional, Sequence, Union
|
|
|
|
import mmcv
|
|
import numpy as np
|
|
import torch
|
|
from mmengine import Config
|
|
from mmengine.dataset import Compose
|
|
from mmengine.registry import init_default_scope
|
|
from mmengine.runner import load_checkpoint
|
|
from mmengine.utils import mkdir_or_exist
|
|
|
|
from mmseg.models import BaseSegmentor
|
|
from mmseg.registry import MODELS
|
|
from mmseg.structures import SegDataSample
|
|
from mmseg.utils import SampleList, dataset_aliases, get_classes, get_palette
|
|
from mmseg.visualization import SegLocalVisualizer
|
|
|
|
|
|
def init_model(config: Union[str, Path, Config],
|
|
checkpoint: Optional[str] = None,
|
|
device: str = 'cuda:0',
|
|
cfg_options: Optional[dict] = None):
|
|
"""Initialize a segmentor from config file.
|
|
|
|
Args:
|
|
config (str, :obj:`Path`, or :obj:`mmengine.Config`): Config file path,
|
|
:obj:`Path`, or the config object.
|
|
checkpoint (str, optional): Checkpoint path. If left as None, the model
|
|
will not load any weights.
|
|
device (str, optional) CPU/CUDA device option. Default 'cuda:0'.
|
|
Use 'cpu' for loading model on CPU.
|
|
cfg_options (dict, optional): Options to override some settings in
|
|
the used config.
|
|
Returns:
|
|
nn.Module: The constructed segmentor.
|
|
"""
|
|
if isinstance(config, (str, Path)):
|
|
config = Config.fromfile(config)
|
|
elif not isinstance(config, Config):
|
|
raise TypeError('config must be a filename or Config object, '
|
|
'but got {}'.format(type(config)))
|
|
if cfg_options is not None:
|
|
config.merge_from_dict(cfg_options)
|
|
elif 'init_cfg' in config.model.backbone:
|
|
config.model.backbone.init_cfg = None
|
|
config.model.pretrained = None
|
|
config.model.train_cfg = None
|
|
init_default_scope(config.get('default_scope', 'mmseg'))
|
|
|
|
model = MODELS.build(config.model)
|
|
if checkpoint is not None:
|
|
checkpoint = load_checkpoint(model, checkpoint, map_location='cpu')
|
|
dataset_meta = checkpoint['meta'].get('dataset_meta', None)
|
|
# save the dataset_meta in the model for convenience
|
|
if 'dataset_meta' in checkpoint.get('meta', {}):
|
|
# mmseg 1.x
|
|
model.dataset_meta = dataset_meta
|
|
elif 'CLASSES' in checkpoint.get('meta', {}):
|
|
# < mmseg 1.x
|
|
classes = checkpoint['meta']['CLASSES']
|
|
palette = checkpoint['meta']['PALETTE']
|
|
model.dataset_meta = {'classes': classes, 'palette': palette}
|
|
else:
|
|
warnings.simplefilter('once')
|
|
warnings.warn(
|
|
'dataset_meta or class names are not saved in the '
|
|
'checkpoint\'s meta data, classes and palette will be'
|
|
'set according to num_classes ')
|
|
num_classes = model.decode_head.num_classes
|
|
dataset_name = None
|
|
for name in dataset_aliases.keys():
|
|
if len(get_classes(name)) == num_classes:
|
|
dataset_name = name
|
|
break
|
|
if dataset_name is None:
|
|
warnings.warn(
|
|
'No suitable dataset found, use Cityscapes by default')
|
|
dataset_name = 'cityscapes'
|
|
model.dataset_meta = {
|
|
'classes': get_classes(dataset_name),
|
|
'palette': get_palette(dataset_name)
|
|
}
|
|
model.cfg = config # save the config in the model for convenience
|
|
model.to(device)
|
|
model.eval()
|
|
return model
|
|
|
|
|
|
ImageType = Union[str, np.ndarray, Sequence[str], Sequence[np.ndarray]]
|
|
|
|
|
|
def _preprare_data(imgs: ImageType, model: BaseSegmentor):
|
|
|
|
cfg = model.cfg
|
|
for t in cfg.test_pipeline:
|
|
if t.get('type') == 'LoadAnnotations':
|
|
cfg.test_pipeline.remove(t)
|
|
|
|
is_batch = True
|
|
if not isinstance(imgs, (list, tuple)):
|
|
imgs = [imgs]
|
|
is_batch = False
|
|
|
|
if isinstance(imgs[0], np.ndarray):
|
|
cfg.test_pipeline[0]['type'] = 'LoadImageFromNDArray'
|
|
|
|
# TODO: Consider using the singleton pattern to avoid building
|
|
# a pipeline for each inference
|
|
pipeline = Compose(cfg.test_pipeline)
|
|
|
|
data = defaultdict(list)
|
|
for img in imgs:
|
|
if isinstance(img, np.ndarray):
|
|
data_ = dict(img=img)
|
|
else:
|
|
data_ = dict(img_path=img)
|
|
data_ = pipeline(data_)
|
|
data['inputs'].append(data_['inputs'])
|
|
data['data_samples'].append(data_['data_samples'])
|
|
|
|
return data, is_batch
|
|
|
|
|
|
def inference_model(model: BaseSegmentor,
|
|
img: ImageType) -> Union[SegDataSample, SampleList]:
|
|
"""Inference image(s) with the segmentor.
|
|
|
|
Args:
|
|
model (nn.Module): The loaded segmentor.
|
|
imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
|
|
images.
|
|
|
|
Returns:
|
|
:obj:`SegDataSample` or list[:obj:`SegDataSample`]:
|
|
If imgs is a list or tuple, the same length list type results
|
|
will be returned, otherwise return the segmentation results directly.
|
|
"""
|
|
# prepare data
|
|
data, is_batch = _preprare_data(img, model)
|
|
|
|
# forward the model
|
|
with torch.no_grad():
|
|
results = model.test_step(data)
|
|
|
|
return results if is_batch else results[0]
|
|
|
|
|
|
def show_result_pyplot(model: BaseSegmentor,
|
|
img: Union[str, np.ndarray],
|
|
result: SegDataSample,
|
|
opacity: float = 0.5,
|
|
title: str = '',
|
|
draw_gt: bool = True,
|
|
draw_pred: bool = True,
|
|
wait_time: float = 0,
|
|
show: bool = True,
|
|
withLabels: Optional[bool] = True,
|
|
save_dir=None,
|
|
out_file=None):
|
|
"""Visualize the segmentation results on the image.
|
|
|
|
Args:
|
|
model (nn.Module): The loaded segmentor.
|
|
img (str or np.ndarray): Image filename or loaded image.
|
|
result (SegDataSample): The prediction SegDataSample result.
|
|
opacity(float): Opacity of painted segmentation map.
|
|
Default 0.5. Must be in (0, 1] range.
|
|
title (str): The title of pyplot figure.
|
|
Default is ''.
|
|
draw_gt (bool): Whether to draw GT SegDataSample. Default to True.
|
|
draw_pred (bool): Whether to draw Prediction SegDataSample.
|
|
Defaults to True.
|
|
wait_time (float): The interval of show (s). 0 is the special value
|
|
that means "forever". Defaults to 0.
|
|
show (bool): Whether to display the drawn image.
|
|
Default to True.
|
|
withLabels(bool, optional): Add semantic labels in visualization
|
|
result, Default to True.
|
|
save_dir (str, optional): Save file dir for all storage backends.
|
|
If it is None, the backend storage will not save any data.
|
|
out_file (str, optional): Path to output file. Default to None.
|
|
|
|
|
|
|
|
Returns:
|
|
np.ndarray: the drawn image which channel is RGB.
|
|
"""
|
|
if hasattr(model, 'module'):
|
|
model = model.module
|
|
if isinstance(img, str):
|
|
image = mmcv.imread(img, channel_order='rgb')
|
|
else:
|
|
image = img
|
|
if save_dir is not None:
|
|
mkdir_or_exist(save_dir)
|
|
# init visualizer
|
|
visualizer = SegLocalVisualizer(
|
|
vis_backends=[dict(type='LocalVisBackend')],
|
|
save_dir=save_dir,
|
|
alpha=opacity)
|
|
visualizer.dataset_meta = dict(
|
|
classes=model.dataset_meta['classes'],
|
|
palette=model.dataset_meta['palette'])
|
|
visualizer.add_datasample(
|
|
name=title,
|
|
image=image,
|
|
data_sample=result,
|
|
draw_gt=draw_gt,
|
|
draw_pred=draw_pred,
|
|
wait_time=wait_time,
|
|
out_file=out_file,
|
|
show=show,
|
|
withLabels=withLabels)
|
|
vis_img = visualizer.get_image()
|
|
|
|
return vis_img
|