mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily get feedback. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers. ## Motivation [Add semantic label to the segmentation visualization results 分割可视化结果中加上语义信息 #154](https://github.com/open-mmlab/OpenMMLabCamp/discussions/154) corresponding issue: [跑出来结果之后怎么在结果图片上获取各个语意部分的区域信息? #2578](https://github.com/open-mmlab/mmsegmentation/issues/2578) ## Modification 1. mmseg/apis/inference.py, add withLabels in visualizer.add_datasample call, to indicate whether add semantic label 2. mmseg/visualization/local_visualizer.py, add semantic labels by opencv; modify the demo comment description 3. mmseg/utils/__init__.py, add bdd100k datasets to test local_visualizer.py **Current visualize result** <img width="637" alt="image" src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/6ef6ce02-1d82-46f8-bde9-a1d69ff62df8"> **Add semantic label** <img width="637" alt="image" src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/00716679-b43a-4794-8499-9bfecdb4b78b"> ## Test results **tests/test_visualization/test_local_visualizer.py** test results:(MMSegmentation/tests/data/pseudo_cityscapes_dataset/leftImg8bit/val/frankfurt/frankfurt_000000_000294_leftImg8bit.png) <img width="643" alt="image" src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/6792b7d2-2512-4ea9-8500-1a7ed2d5e0dc"> **demo/inference_demo.ipynb** test results: <img width="966" alt="image" src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/dfc0147e-fb1a-490a-b6ff-a8b209352d9b"> ----- ## Drawbacks config opencv thickness according to image size <img width="496" alt="image" src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/0a54d72c-62b1-422c-89ae-69dc753fe0fc"> I have no idea of dealing with label overlapping for the time being
299 lines
13 KiB
Python
299 lines
13 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
from typing import Dict, List, Optional
|
|
|
|
import cv2
|
|
import mmcv
|
|
import numpy as np
|
|
import torch
|
|
from mmengine.dist import master_only
|
|
from mmengine.structures import PixelData
|
|
from mmengine.visualization import Visualizer
|
|
|
|
from mmseg.registry import VISUALIZERS
|
|
from mmseg.structures import SegDataSample
|
|
from mmseg.utils import get_classes, get_palette
|
|
|
|
|
|
@VISUALIZERS.register_module()
|
|
class SegLocalVisualizer(Visualizer):
|
|
"""Local Visualizer.
|
|
|
|
Args:
|
|
name (str): Name of the instance. Defaults to 'visualizer'.
|
|
image (np.ndarray, optional): the origin image to draw. The format
|
|
should be RGB. Defaults to None.
|
|
vis_backends (list, optional): Visual backend config list.
|
|
Defaults to None.
|
|
save_dir (str, optional): Save file dir for all storage backends.
|
|
If it is None, the backend storage will not save any data.
|
|
classes (list, optional): Input classes for result rendering, as the
|
|
prediction of segmentation model is a segment map with label
|
|
indices, `classes` is a list which includes items responding to the
|
|
label indices. If classes is not defined, visualizer will take
|
|
`cityscapes` classes by default. Defaults to None.
|
|
palette (list, optional): Input palette for result rendering, which is
|
|
a list of color palette responding to the classes. Defaults to None.
|
|
dataset_name (str, optional): `Dataset name or alias <https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/utils/class_names.py#L302-L317>`_
|
|
visulizer will use the meta information of the dataset i.e. classes
|
|
and palette, but the `classes` and `palette` have higher priority.
|
|
Defaults to None.
|
|
alpha (int, float): The transparency of segmentation mask.
|
|
Defaults to 0.8.
|
|
|
|
Examples:
|
|
>>> import numpy as np
|
|
>>> import torch
|
|
>>> from mmengine.structures import PixelData
|
|
>>> from mmseg.structures import SegDataSample
|
|
>>> from mmseg.visualization import SegLocalVisualizer
|
|
|
|
>>> seg_local_visualizer = SegLocalVisualizer()
|
|
>>> image = np.random.randint(0, 256,
|
|
... size=(10, 12, 3)).astype('uint8')
|
|
>>> gt_sem_seg_data = dict(data=torch.randint(0, 2, (1, 10, 12)))
|
|
>>> gt_sem_seg = PixelData(**gt_sem_seg_data)
|
|
>>> gt_seg_data_sample = SegDataSample()
|
|
>>> gt_seg_data_sample.gt_sem_seg = gt_sem_seg
|
|
>>> seg_local_visualizer.dataset_meta = dict(
|
|
>>> classes=('background', 'foreground'),
|
|
>>> palette=[[120, 120, 120], [6, 230, 230]])
|
|
>>> seg_local_visualizer.add_datasample('visualizer_example',
|
|
... image, gt_seg_data_sample)
|
|
>>> seg_local_visualizer.add_datasample(
|
|
... 'visualizer_example', image,
|
|
... gt_seg_data_sample, show=True)
|
|
""" # noqa
|
|
|
|
def __init__(self,
|
|
name: str = 'visualizer',
|
|
image: Optional[np.ndarray] = None,
|
|
vis_backends: Optional[Dict] = None,
|
|
save_dir: Optional[str] = None,
|
|
classes: Optional[List] = None,
|
|
palette: Optional[List] = None,
|
|
dataset_name: Optional[str] = None,
|
|
alpha: float = 0.8,
|
|
**kwargs):
|
|
super().__init__(name, image, vis_backends, save_dir, **kwargs)
|
|
self.alpha: float = alpha
|
|
self.set_dataset_meta(palette, classes, dataset_name)
|
|
|
|
def _get_center_loc(self, mask: np.ndarray) -> np.ndarray:
|
|
"""Get semantic seg center coordinate.
|
|
|
|
Args:
|
|
mask: np.ndarray: get from sem_seg
|
|
"""
|
|
loc = np.argwhere(mask == 1)
|
|
|
|
loc_sort = np.array(
|
|
sorted(loc.tolist(), key=lambda row: (row[0], row[1])))
|
|
y_list = loc_sort[:, 0]
|
|
unique, indices, counts = np.unique(
|
|
y_list, return_index=True, return_counts=True)
|
|
y_loc = unique[counts.argmax()]
|
|
y_most_freq_loc = loc[loc_sort[:, 0] == y_loc]
|
|
center_num = len(y_most_freq_loc) // 2
|
|
x = y_most_freq_loc[center_num][1]
|
|
y = y_most_freq_loc[center_num][0]
|
|
return np.array([x, y])
|
|
|
|
def _draw_sem_seg(self,
|
|
image: np.ndarray,
|
|
sem_seg: PixelData,
|
|
classes: Optional[List],
|
|
palette: Optional[List],
|
|
withLabels: Optional[bool] = True) -> np.ndarray:
|
|
"""Draw semantic seg of GT or prediction.
|
|
|
|
Args:
|
|
image (np.ndarray): The image to draw.
|
|
sem_seg (:obj:`PixelData`): Data structure for pixel-level
|
|
annotations or predictions.
|
|
classes (list, optional): Input classes for result rendering, as
|
|
the prediction of segmentation model is a segment map with
|
|
label indices, `classes` is a list which includes items
|
|
responding to the label indices. If classes is not defined,
|
|
visualizer will take `cityscapes` classes by default.
|
|
Defaults to None.
|
|
palette (list, optional): Input palette for result rendering, which
|
|
is a list of color palette responding to the classes.
|
|
Defaults to None.
|
|
withLabels(bool, optional): Add semantic labels in visualization
|
|
result, Default to True.
|
|
|
|
Returns:
|
|
np.ndarray: the drawn image which channel is RGB.
|
|
"""
|
|
num_classes = len(classes)
|
|
|
|
sem_seg = sem_seg.cpu().data
|
|
ids = np.unique(sem_seg)[::-1]
|
|
legal_indices = ids < num_classes
|
|
ids = ids[legal_indices]
|
|
labels = np.array(ids, dtype=np.int64)
|
|
|
|
colors = [palette[label] for label in labels]
|
|
|
|
mask = np.zeros_like(image, dtype=np.uint8)
|
|
for label, color in zip(labels, colors):
|
|
mask[sem_seg[0] == label, :] = color
|
|
|
|
if withLabels:
|
|
font = cv2.FONT_HERSHEY_SIMPLEX
|
|
# (0,1] to change the size of the text relative to the image
|
|
scale = 0.05
|
|
fontScale = min(image.shape[0], image.shape[1]) / (25 / scale)
|
|
fontColor = (255, 255, 255)
|
|
if image.shape[0] < 300 or image.shape[1] < 300:
|
|
thickness = 1
|
|
rectangleThickness = 1
|
|
else:
|
|
thickness = 2
|
|
rectangleThickness = 2
|
|
lineType = 2
|
|
|
|
if isinstance(sem_seg[0], torch.Tensor):
|
|
masks = sem_seg[0].numpy() == labels[:, None, None]
|
|
else:
|
|
masks = sem_seg[0] == labels[:, None, None]
|
|
masks = masks.astype(np.uint8)
|
|
for mask_num in range(len(labels)):
|
|
classes_id = labels[mask_num]
|
|
classes_color = colors[mask_num]
|
|
loc = self._get_center_loc(masks[mask_num])
|
|
text = classes[classes_id]
|
|
(label_width, label_height), baseline = cv2.getTextSize(
|
|
text, font, fontScale, thickness)
|
|
mask = cv2.rectangle(mask, loc,
|
|
(loc[0] + label_width + baseline,
|
|
loc[1] + label_height + baseline),
|
|
classes_color, -1)
|
|
mask = cv2.rectangle(mask, loc,
|
|
(loc[0] + label_width + baseline,
|
|
loc[1] + label_height + baseline),
|
|
(0, 0, 0), rectangleThickness)
|
|
mask = cv2.putText(mask, text, (loc[0], loc[1] + label_height),
|
|
font, fontScale, fontColor, thickness,
|
|
lineType)
|
|
color_seg = (image * (1 - self.alpha) + mask * self.alpha).astype(
|
|
np.uint8)
|
|
self.set_image(color_seg)
|
|
return color_seg
|
|
|
|
def set_dataset_meta(self,
|
|
classes: Optional[List] = None,
|
|
palette: Optional[List] = None,
|
|
dataset_name: Optional[str] = None) -> None:
|
|
"""Set meta information to visualizer.
|
|
|
|
Args:
|
|
classes (list, optional): Input classes for result rendering, as
|
|
the prediction of segmentation model is a segment map with
|
|
label indices, `classes` is a list which includes items
|
|
responding to the label indices. If classes is not defined,
|
|
visualizer will take `cityscapes` classes by default.
|
|
Defaults to None.
|
|
palette (list, optional): Input palette for result rendering, which
|
|
is a list of color palette responding to the classes.
|
|
Defaults to None.
|
|
dataset_name (str, optional): `Dataset name or alias <https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/utils/class_names.py#L302-L317>`_
|
|
visulizer will use the meta information of the dataset i.e.
|
|
classes and palette, but the `classes` and `palette` have
|
|
higher priority. Defaults to None.
|
|
""" # noqa
|
|
# Set default value. When calling
|
|
# `SegLocalVisualizer().dataset_meta=xxx`,
|
|
# it will override the default value.
|
|
if dataset_name is None:
|
|
dataset_name = 'cityscapes'
|
|
classes = classes if classes else get_classes(dataset_name)
|
|
palette = palette if palette else get_palette(dataset_name)
|
|
assert len(classes) == len(
|
|
palette), 'The length of classes should be equal to palette'
|
|
self.dataset_meta: dict = {'classes': classes, 'palette': palette}
|
|
|
|
@master_only
|
|
def add_datasample(
|
|
self,
|
|
name: str,
|
|
image: np.ndarray,
|
|
data_sample: Optional[SegDataSample] = None,
|
|
draw_gt: bool = True,
|
|
draw_pred: bool = True,
|
|
show: bool = False,
|
|
wait_time: float = 0,
|
|
# TODO: Supported in mmengine's Viusalizer.
|
|
out_file: Optional[str] = None,
|
|
step: int = 0,
|
|
withLabels: Optional[bool] = True) -> None:
|
|
"""Draw datasample and save to all backends.
|
|
|
|
- If GT and prediction are plotted at the same time, they are
|
|
displayed in a stitched image where the left image is the
|
|
ground truth and the right image is the prediction.
|
|
- If ``show`` is True, all storage backends are ignored, and
|
|
the images will be displayed in a local window.
|
|
- If ``out_file`` is specified, the drawn image will be
|
|
saved to ``out_file``. it is usually used when the display
|
|
is not available.
|
|
|
|
Args:
|
|
name (str): The image identifier.
|
|
image (np.ndarray): The image to draw.
|
|
gt_sample (:obj:`SegDataSample`, optional): GT SegDataSample.
|
|
Defaults to None.
|
|
pred_sample (:obj:`SegDataSample`, optional): Prediction
|
|
SegDataSample. Defaults to None.
|
|
draw_gt (bool): Whether to draw GT SegDataSample. Default to True.
|
|
draw_pred (bool): Whether to draw Prediction SegDataSample.
|
|
Defaults to True.
|
|
show (bool): Whether to display the drawn image. Default to False.
|
|
wait_time (float): The interval of show (s). Defaults to 0.
|
|
out_file (str): Path to output file. Defaults to None.
|
|
step (int): Global step value to record. Defaults to 0.
|
|
withLabels(bool, optional): Add semantic labels in visualization
|
|
result, Defaults to True.
|
|
"""
|
|
classes = self.dataset_meta.get('classes', None)
|
|
palette = self.dataset_meta.get('palette', None)
|
|
|
|
gt_img_data = None
|
|
pred_img_data = None
|
|
|
|
if draw_gt and data_sample is not None and 'gt_sem_seg' in data_sample:
|
|
gt_img_data = image
|
|
assert classes is not None, 'class information is ' \
|
|
'not provided when ' \
|
|
'visualizing semantic ' \
|
|
'segmentation results.'
|
|
gt_img_data = self._draw_sem_seg(gt_img_data,
|
|
data_sample.gt_sem_seg, classes,
|
|
palette, withLabels)
|
|
|
|
if (draw_pred and data_sample is not None
|
|
and 'pred_sem_seg' in data_sample):
|
|
pred_img_data = image
|
|
assert classes is not None, 'class information is ' \
|
|
'not provided when ' \
|
|
'visualizing semantic ' \
|
|
'segmentation results.'
|
|
pred_img_data = self._draw_sem_seg(pred_img_data,
|
|
data_sample.pred_sem_seg,
|
|
classes, palette, withLabels)
|
|
|
|
if gt_img_data is not None and pred_img_data is not None:
|
|
drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
|
|
elif gt_img_data is not None:
|
|
drawn_img = gt_img_data
|
|
else:
|
|
drawn_img = pred_img_data
|
|
|
|
if show:
|
|
self.show(drawn_img, win_name=name, wait_time=wait_time)
|
|
|
|
if out_file is not None:
|
|
mmcv.imwrite(mmcv.rgb2bgr(drawn_img), out_file)
|
|
else:
|
|
self.add_image(name, drawn_img, step)
|