mmsegmentation/configs_unify/_base_/models/uper_r50.py

43 lines
1.3 KiB
Python

# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='EncoderDecoder',
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
backbone=dict(
type='ResNetV1c',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
dilations=(1, 1, 1, 1),
strides=(1, 2, 2, 2),
norm_cfg=norm_cfg,
norm_eval=False,
style='pytorch',
contract_dilation=True),
decode_head=dict(
type='UPerHead',
in_channels=[256, 512, 1024, 2048],
in_index=[0, 1, 2, 3],
pool_scales=(1, 2, 3, 6),
channels=512,
drop_out_ratio=0.1,
num_classes=19,
norm_cfg=norm_cfg,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
auxiliary_head=dict(
type='FCNHead',
in_channels=1024,
in_index=2,
channels=256,
num_convs=1,
concat_input=False,
drop_out_ratio=0.1,
num_classes=19,
norm_cfg=norm_cfg,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
# model training and testing settings
train_cfg = dict()
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))