mmsegmentation/configs/convnext/convnext.yml

134 lines
4.4 KiB
YAML

Models:
- Name: convnext-tiny_upernet_8xb2-amp-160k_ade20k-512x512
In Collection: UPerNet
Metadata:
backbone: ConvNeXt-T
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 50.25
hardware: V100
backend: PyTorch
batch size: 1
mode: AMP
resolution: (512,512)
Training Memory (GB): 4.23
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 46.11
mIoU(ms+flip): 46.62
Config: configs/convnext/convnext-tiny_upernet_8xb2-amp-160k_ade20k-512x512.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth
- Name: convnext-small_upernet_8xb2-amp-160k_ade20k-512x512
In Collection: UPerNet
Metadata:
backbone: ConvNeXt-S
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 65.88
hardware: V100
backend: PyTorch
batch size: 1
mode: AMP
resolution: (512,512)
Training Memory (GB): 5.16
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 48.56
mIoU(ms+flip): 49.02
Config: configs/convnext/convnext-small_upernet_8xb2-amp-160k_ade20k-512x512.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth
- Name: convnext-base_upernet_8xb2-amp-160k_ade20k-512x512
In Collection: UPerNet
Metadata:
backbone: ConvNeXt-B
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 69.4
hardware: V100
backend: PyTorch
batch size: 1
mode: AMP
resolution: (512,512)
Training Memory (GB): 6.33
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 48.71
mIoU(ms+flip): 49.54
Config: configs/convnext/convnext-base_upernet_8xb2-amp-160k_ade20k-512x512.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth
- Name: convnext-base_upernet_8xb2-amp-160k_ade20k-640x640
In Collection: UPerNet
Metadata:
backbone: ConvNeXt-B
crop size: (640,640)
lr schd: 160000
inference time (ms/im):
- value: 91.91
hardware: V100
backend: PyTorch
batch size: 1
mode: AMP
resolution: (640,640)
Training Memory (GB): 8.53
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 52.13
mIoU(ms+flip): 52.66
Config: configs/convnext/convnext-base_upernet_8xb2-amp-160k_ade20k-640x640.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_640x640_160k_ade20k/upernet_convnext_base_fp16_640x640_160k_ade20k_20220227_182859-9280e39b.pth
- Name: convnext-large_upernet_8xb2-amp-160k_ade20k-640x640
In Collection: UPerNet
Metadata:
backbone: ConvNeXt-L
crop size: (640,640)
lr schd: 160000
inference time (ms/im):
- value: 130.04
hardware: V100
backend: PyTorch
batch size: 1
mode: AMP
resolution: (640,640)
Training Memory (GB): 12.08
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 53.16
mIoU(ms+flip): 53.38
Config: configs/convnext/convnext-large_upernet_8xb2-amp-160k_ade20k-640x640.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth
- Name: convnext-xlarge_upernet_8xb2-amp-160k_ade20k-640x640
In Collection: UPerNet
Metadata:
backbone: ConvNeXt-XL
crop size: (640,640)
lr schd: 160000
inference time (ms/im):
- value: 157.98
hardware: V100
backend: PyTorch
batch size: 1
mode: AMP
resolution: (640,640)
Training Memory (GB): 26.16
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 53.58
mIoU(ms+flip): 54.11
Config: configs/convnext/convnext-xlarge_upernet_8xb2-amp-160k_ade20k-640x640.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth