Jerry Jiarui XU 3150dd0ce4 refactor test organization (#440)
* refactor test organization

* fixed se layer

* update mmcv uper bound
2021-03-30 17:55:09 -07:00

45 lines
1.5 KiB
Python

import torch
from mmseg.models.decode_heads import DNLHead
from .utils import to_cuda
def test_dnl_head():
# DNL with 'embedded_gaussian' mode
head = DNLHead(in_channels=32, channels=16, num_classes=19)
assert len(head.convs) == 2
assert hasattr(head, 'dnl_block')
assert head.dnl_block.temperature == 0.05
inputs = [torch.randn(1, 32, 45, 45)]
if torch.cuda.is_available():
head, inputs = to_cuda(head, inputs)
outputs = head(inputs)
assert outputs.shape == (1, head.num_classes, 45, 45)
# NonLocal2d with 'dot_product' mode
head = DNLHead(
in_channels=32, channels=16, num_classes=19, mode='dot_product')
inputs = [torch.randn(1, 32, 45, 45)]
if torch.cuda.is_available():
head, inputs = to_cuda(head, inputs)
outputs = head(inputs)
assert outputs.shape == (1, head.num_classes, 45, 45)
# NonLocal2d with 'gaussian' mode
head = DNLHead(
in_channels=32, channels=16, num_classes=19, mode='gaussian')
inputs = [torch.randn(1, 32, 45, 45)]
if torch.cuda.is_available():
head, inputs = to_cuda(head, inputs)
outputs = head(inputs)
assert outputs.shape == (1, head.num_classes, 45, 45)
# NonLocal2d with 'concatenation' mode
head = DNLHead(
in_channels=32, channels=16, num_classes=19, mode='concatenation')
inputs = [torch.randn(1, 32, 45, 45)]
if torch.cuda.is_available():
head, inputs = to_cuda(head, inputs)
outputs = head(inputs)
assert outputs.shape == (1, head.num_classes, 45, 45)