小飞猪 b2f10954e6
[Doc] translate doc for docs/zh_cn/user_guides/5_deployment.md (#3281)
Thanks for your contribution and we appreciate it a lot. The following
instructions would make your pull request more healthy and more easily
get feedback. If you do not understand some items, don't worry, just
make the pull request and seek help from maintainers.

## Motivation

translate doc for docs/zh_cn/user_guides/5_deployment.md

## Modification

update `docs/en/user_guides/5_deployment.md`
fix `docs/zh_cn/user_guides/5_deployment.md`

## BC-breaking (Optional)

Does the modification introduce changes that break the
backward-compatibility of the downstream repos?
If so, please describe how it breaks the compatibility and how the
downstream projects should modify their code to keep compatibility with
this PR.

## Use cases (Optional)

If this PR introduces a new feature, it is better to list some use cases
here, and update the documentation.

## Checklist

1. Pre-commit or other linting tools are used to fix the potential lint
issues.
2. The modification is covered by complete unit tests. If not, please
add more unit test to ensure the correctness.
3. If the modification has potential influence on downstream projects,
this PR should be tested with downstream projects, like MMDet or
MMDet3D.
4. The documentation has been modified accordingly, like docstring or
example tutorials.

---------

Co-authored-by: 谢昕辰 <xiexinch@outlook.com>
2023-08-25 10:19:14 +08:00

13 KiB
Raw Blame History

教程5模型部署

MMSegmentation 模型部署


MMSegmentation 又称mmseg,是一个基于 PyTorch 的开源对象分割工具箱。它是 OpenMMLab 项目的一部分。

安装

安装 mmseg

请参考官网安装指南

安装 mmdeploy

mmdeploy 有以下几种安装方式:

方式一: 安装预编译包

请参考安装概述

方式二: 一键式脚本安装

如果部署平台是 Ubuntu 18.04 及以上版本 请参考脚本安装说明,完成安装过程。 比如,以下命令可以安装 mmdeploy 以及配套的推理引擎——ONNX Runtime.

git clone --recursive -b main https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
python3 tools/scripts/build_ubuntu_x64_ort.py $(nproc)
export PYTHONPATH=$(pwd)/build/lib:$PYTHONPATH
export LD_LIBRARY_PATH=$(pwd)/../mmdeploy-dep/onnxruntime-linux-x64-1.8.1/lib/:$LD_LIBRARY_PATH

说明:

  • $(pwd)/build/lib 添加到 PYTHONPATH,目的是为了加载 mmdeploy SDK python 包 mmdeploy_runtime,在章节 SDK模型推理中讲述其用法。
  • 使用 ONNX Runtime推理后端模型时,需要加载自定义算子库,需要把 ONNX Runtime 库的路径加入环境变量 LD_LIBRARY_PATH中。

方式三: 源码安装

在方式一、二都满足不了的情况下,请参考源码安装说明 安装 mmdeploy 以及所需推理引擎。

模型转换

你可以使用 tools/deploy.py 把 mmseg 模型一键式转换为推理后端模型。 该工具的详细使用说明请参考这里.

以下,我们将演示如何把 unet 转换为 onnx 模型。

cd mmdeploy

# download unet model from mmseg model zoo
mim download mmsegmentation --config unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024 --dest .

# convert mmseg model to onnxruntime model with dynamic shape
python tools/deploy.py \
    configs/mmseg/segmentation_onnxruntime_dynamic.py \
    unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py \
    fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204-6860854e.pth \
    demo/resources/cityscapes.png \
    --work-dir mmdeploy_models/mmseg/ort \
    --device cpu \
    --show \
    --dump-info

转换的关键之一是使用正确的配置文件。项目中已内置了各后端部署配置文件。 文件的命名模式是:

segmentation_{backend}-{precision}_{static | dynamic}_{shape}.py

其中:

  • {backend}: 推理后端名称。比如onnxruntime、tensorrt、pplnn、ncnn、openvino、coreml 等等
  • {precision}: 推理精度。比如fp16、int8。不填表示 fp32
  • {static | dynamic}: 动态、静态 shape
  • {shape}: 模型输入的 shape 或者 shape 范围

在上例中,你也可以把 unet 转为其他后端模型。比如使用segmentation_tensorrt-fp16_dynamic-512x1024-2048x2048.py,把模型转为 tensorrt-fp16 模型。

当转 tensorrt 模型时, --device 需要被设置为 "cuda"

模型规范

在使用转换后的模型进行推理之前,有必要了解转换结果的结构。 它存放在 --work-dir 指定的路路径下。

上例中的mmdeploy_models/mmseg/ort,结构如下:

mmdeploy_models/mmseg/ort
├── deploy.json
├── detail.json
├── end2end.onnx
└── pipeline.json

重要的是:

  • end2end.onnx: 推理引擎文件。可用 ONNX Runtime 推理
  • *.json: mmdeploy SDK 推理所需的 meta 信息

整个文件夹被定义为mmdeploy SDK model。换言之,mmdeploy SDK model既包括推理引擎,也包括推理 meta 信息。

模型推理

后端模型推理

以上述模型转换后的 end2end.onnx 为例,你可以使用如下代码进行推理:

from mmdeploy.apis.utils import build_task_processor
from mmdeploy.utils import get_input_shape, load_config
import torch

deploy_cfg = 'configs/mmseg/segmentation_onnxruntime_dynamic.py'
model_cfg = './unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py'
device = 'cpu'
backend_model = ['./mmdeploy_models/mmseg/ort/end2end.onnx']
image = './demo/resources/cityscapes.png'

# read deploy_cfg and model_cfg
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)

# build task and backend model
task_processor = build_task_processor(model_cfg, deploy_cfg, device)
model = task_processor.build_backend_model(backend_model)

# process input image
input_shape = get_input_shape(deploy_cfg)
model_inputs, _ = task_processor.create_input(image, input_shape)

# do model inference
with torch.no_grad():
    result = model.test_step(model_inputs)

# visualize results
task_processor.visualize(
    image=image,
    model=model,
    result=result[0],
    window_name='visualize',
    output_file='./output_segmentation.png')

SDK 模型推理

你也可以参考如下代码,对 SDK model 进行推理:

from mmdeploy_runtime import Segmentor
import cv2
import numpy as np

img = cv2.imread('./demo/resources/cityscapes.png')

# create a classifier
segmentor = Segmentor(model_path='./mmdeploy_models/mmseg/ort', device_name='cpu', device_id=0)
# perform inference
seg = segmentor(img)

# visualize inference result
## random a palette with size 256x3
palette = np.random.randint(0, 256, size=(256, 3))
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
for label, color in enumerate(palette):
    color_seg[seg == label, :] = color
# convert to BGR
color_seg = color_seg[..., ::-1]
img = img * 0.5 + color_seg * 0.5
img = img.astype(np.uint8)
cv2.imwrite('output_segmentation.png', img)

除了python APImmdeploy SDK 还提供了诸如 C、C++、C#、Java等多语言接口。 你可以参考样例学习其他语言接口的使用方法。

模型支持列表

Model TorchScript OnnxRuntime TensorRT ncnn PPLNN OpenVino
FCN Y Y Y Y Y Y
PSPNet* Y Y Y Y Y Y
DeepLabV3 Y Y Y Y Y Y
DeepLabV3+ Y Y Y Y Y Y
Fast-SCNN* Y Y Y N Y Y
UNet Y Y Y Y Y Y
ANN* Y Y Y N N N
APCNet Y Y Y Y N N
BiSeNetV1 Y Y Y Y N Y
BiSeNetV2 Y Y Y Y N Y
CGNet Y Y Y Y N Y
DMNet ? Y N N N N
DNLNet ? Y Y Y N Y
EMANet Y Y Y N N Y
EncNet Y Y Y N N Y
ERFNet Y Y Y Y N Y
FastFCN Y Y Y Y N Y
GCNet Y Y Y N N N
ICNet* Y Y Y N N Y
ISANet* N Y Y N N Y
NonLocal Net ? Y Y Y N Y
OCRNet Y Y Y Y N Y
PointRend* Y Y Y N N N
Semantic FPN Y Y Y Y N Y
STDC Y Y Y Y N Y
UPerNet* N Y Y N N N
DANet ? Y Y N N Y
Segmenter* N Y Y Y N Y
SegFormer* ? Y Y N N Y
SETR ? Y N N N Y
CCNet ? N N N N N
PSANet ? N N N N N
DPT ? N N N N N

注意事项

  • 所有 mmseg 模型仅支持 "whole" 推理模式。

  • PSPNetFast-SCNN 仅支持静态输入,因为多数推理框架的 nn.AdaptiveAvgPool2d 不支持动态输入。

  • 对于仅支持静态形状的模型,应使用静态形状的部署配置文件,例如 configs/mmseg/segmentation_tensorrt_static-1024x2048.py

  • 对于喜欢部署模型生成概率特征图的用户,将 codebase_config = dict(with_argmax=False) 放在部署配置中就足够了。