89 lines
3.0 KiB
YAML
89 lines
3.0 KiB
YAML
Collections:
|
|
- Name: BiSeNetV2
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
Paper:
|
|
URL: https://arxiv.org/abs/2004.02147
|
|
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic
|
|
Segmentation'
|
|
README: configs/bisenetv2/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545
|
|
Version: v0.18.0
|
|
Models:
|
|
- Name: bisenetv2_fcn_4x4_1024x1024_160k_cityscapes
|
|
In Collection: BiSeNetV2
|
|
Metadata:
|
|
backbone: BiSeNetV2
|
|
crop size: (1024,1024)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 31.48
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (1024,1024)
|
|
Training Memory (GB): 7.64
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 73.21
|
|
mIoU(ms+flip): 75.74
|
|
Config: configs/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes_20210902_015551-bcf10f09.pth
|
|
- Name: bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes
|
|
In Collection: BiSeNetV2
|
|
Metadata:
|
|
backbone: BiSeNetV2
|
|
crop size: (1024,1024)
|
|
lr schd: 160000
|
|
Training Memory (GB): 7.64
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 73.57
|
|
mIoU(ms+flip): 75.8
|
|
Config: configs/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes_20210902_112947-5f8103b4.pth
|
|
- Name: bisenetv2_fcn_4x8_1024x1024_160k_cityscapes
|
|
In Collection: BiSeNetV2
|
|
Metadata:
|
|
backbone: BiSeNetV2
|
|
crop size: (1024,1024)
|
|
lr schd: 160000
|
|
Training Memory (GB): 15.05
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 75.76
|
|
mIoU(ms+flip): 77.79
|
|
Config: configs/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes_20210903_000032-e1a2eed6.pth
|
|
- Name: bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes
|
|
In Collection: BiSeNetV2
|
|
Metadata:
|
|
backbone: BiSeNetV2
|
|
crop size: (1024,1024)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 27.29
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP16
|
|
resolution: (1024,1024)
|
|
Training Memory (GB): 5.77
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 73.07
|
|
mIoU(ms+flip): 75.13
|
|
Config: configs/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes_20210902_045942-b979777b.pth
|