mmsegmentation/configs/deeplabv3plus/deeplabv3plus.yml

672 lines
23 KiB
YAML

Collections:
- Name: deeplabv3plus
Metadata:
Training Data:
- Cityscapes
- ADE20K
- Pascal VOC 2012 + Aug
- Pascal Context
- Pascal Context 59
- LoveDA
Paper:
URL: https://arxiv.org/abs/1802.02611
Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
README: configs/deeplabv3plus/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30
Version: v0.17.0
Converted From:
Code: https://github.com/tensorflow/models/tree/master/research/deeplab
Models:
- Name: deeplabv3plus_r50-d8_512x1024_40k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-50-D8
crop size: (512,1024)
lr schd: 40000
inference time (ms/im):
- value: 253.81
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 7.5
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.61
mIoU(ms+flip): 81.01
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610-d222ffcd.pth
- Name: deeplabv3plus_r101-d8_512x1024_40k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 40000
inference time (ms/im):
- value: 384.62
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 11.0
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.21
mIoU(ms+flip): 81.82
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614-3769eecf.pth
- Name: deeplabv3plus_r50-d8_769x769_40k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-50-D8
crop size: (769,769)
lr schd: 40000
inference time (ms/im):
- value: 581.4
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
Training Memory (GB): 8.5
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.97
mIoU(ms+flip): 80.46
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143-1dcb0e3c.pth
- Name: deeplabv3plus_r101-d8_769x769_40k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-101-D8
crop size: (769,769)
lr schd: 40000
inference time (ms/im):
- value: 869.57
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
Training Memory (GB): 12.5
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.46
mIoU(ms+flip): 80.5
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304-ff414b9e.pth
- Name: deeplabv3plus_r18-d8_512x1024_80k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-18-D8
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 70.08
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 2.2
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 76.89
mIoU(ms+flip): 78.76
Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes_20201226_080942-cff257fe.pth
- Name: deeplabv3plus_r50-d8_512x1024_80k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-50-D8
crop size: (512,1024)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.09
mIoU(ms+flip): 81.13
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth
- Name: deeplabv3plus_r101-d8_512x1024_80k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.97
mIoU(ms+flip): 82.03
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth
- Name: deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 127.06
hardware: V100
backend: PyTorch
batch size: 1
mode: FP16
resolution: (512,1024)
Training Memory (GB): 6.35
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.46
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-f1104f4b.pth
- Name: deeplabv3plus_r18-d8_769x769_80k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-18-D8
crop size: (769,769)
lr schd: 80000
inference time (ms/im):
- value: 174.22
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
Training Memory (GB): 2.5
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 76.26
mIoU(ms+flip): 77.91
Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes_20201226_083346-f326e06a.pth
- Name: deeplabv3plus_r50-d8_769x769_80k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-50-D8
crop size: (769,769)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.83
mIoU(ms+flip): 81.48
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth
- Name: deeplabv3plus_r101-d8_769x769_80k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-101-D8
crop size: (769,769)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.98
mIoU(ms+flip): 82.18
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20200607_000405-a7573d20.pth
- Name: deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-101-D16-MG124
crop size: (512,1024)
lr schd: 40000
inference time (ms/im):
- value: 133.69
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 5.8
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.09
mIoU(ms+flip): 80.36
Config: configs/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-cf9ce186.pth
- Name: deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-101-D16-MG124
crop size: (512,1024)
lr schd: 80000
Training Memory (GB): 9.9
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.9
mIoU(ms+flip): 81.33
Config: configs/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-ee6158e0.pth
- Name: deeplabv3plus_r18b-d8_512x1024_80k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-18b-D8
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 66.89
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 2.1
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 75.87
mIoU(ms+flip): 77.52
Config: configs/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes_20201226_090828-e451abd9.pth
- Name: deeplabv3plus_r50b-d8_512x1024_80k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-50b-D8
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 253.81
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 7.4
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.28
mIoU(ms+flip): 81.44
Config: configs/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes_20201225_213645-a97e4e43.pth
- Name: deeplabv3plus_r101b-d8_512x1024_80k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-101b-D8
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 384.62
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 10.9
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.16
mIoU(ms+flip): 81.41
Config: configs/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes_20201226_190843-9c3c93a4.pth
- Name: deeplabv3plus_r18b-d8_769x769_80k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-18b-D8
crop size: (769,769)
lr schd: 80000
inference time (ms/im):
- value: 167.79
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
Training Memory (GB): 2.4
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 76.36
mIoU(ms+flip): 78.24
Config: configs/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes_20201226_151312-2c868aff.pth
- Name: deeplabv3plus_r50b-d8_769x769_80k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-50b-D8
crop size: (769,769)
lr schd: 80000
inference time (ms/im):
- value: 581.4
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
Training Memory (GB): 8.4
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.41
mIoU(ms+flip): 80.56
Config: configs/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes_20201225_224655-8b596d1c.pth
- Name: deeplabv3plus_r101b-d8_769x769_80k_cityscapes
In Collection: deeplabv3plus
Metadata:
backbone: R-101b-D8
crop size: (769,769)
lr schd: 80000
inference time (ms/im):
- value: 909.09
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
Training Memory (GB): 12.3
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.88
mIoU(ms+flip): 81.46
Config: configs/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes_20201226_205041-227cdf7c.pth
- Name: deeplabv3plus_r50-d8_512x512_80k_ade20k
In Collection: deeplabv3plus
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 47.6
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 10.6
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.72
mIoU(ms+flip): 43.75
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028-bf1400d8.pth
- Name: deeplabv3plus_r101-d8_512x512_80k_ade20k
In Collection: deeplabv3plus
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 70.62
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 14.1
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 44.6
mIoU(ms+flip): 46.06
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139-d5730af7.pth
- Name: deeplabv3plus_r50-d8_512x512_160k_ade20k
In Collection: deeplabv3plus
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.95
mIoU(ms+flip): 44.93
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504-6135c7e0.pth
- Name: deeplabv3plus_r101-d8_512x512_160k_ade20k
In Collection: deeplabv3plus
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.47
mIoU(ms+flip): 46.35
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth
- Name: deeplabv3plus_r50-d8_512x512_20k_voc12aug
In Collection: deeplabv3plus
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 20000
inference time (ms/im):
- value: 47.62
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 7.6
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 75.93
mIoU(ms+flip): 77.5
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323-aad58ef1.pth
- Name: deeplabv3plus_r101-d8_512x512_20k_voc12aug
In Collection: deeplabv3plus
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 20000
inference time (ms/im):
- value: 72.05
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 11.0
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 77.22
mIoU(ms+flip): 78.59
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345-c7ff3d56.pth
- Name: deeplabv3plus_r50-d8_512x512_40k_voc12aug
In Collection: deeplabv3plus
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 40000
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.81
mIoU(ms+flip): 77.57
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759-e1b43aa9.pth
- Name: deeplabv3plus_r101-d8_512x512_40k_voc12aug
In Collection: deeplabv3plus
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 40000
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 78.62
mIoU(ms+flip): 79.53
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333-faf03387.pth
- Name: deeplabv3plus_r101-d8_480x480_40k_pascal_context
In Collection: deeplabv3plus
Metadata:
backbone: R-101-D8
crop size: (480,480)
lr schd: 40000
inference time (ms/im):
- value: 110.01
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (480,480)
Results:
- Task: Semantic Segmentation
Dataset: Pascal Context
Metrics:
mIoU: 47.3
mIoU(ms+flip): 48.47
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context_20200911_165459-d3c8a29e.pth
- Name: deeplabv3plus_r101-d8_480x480_80k_pascal_context
In Collection: deeplabv3plus
Metadata:
backbone: R-101-D8
crop size: (480,480)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Pascal Context
Metrics:
mIoU: 47.23
mIoU(ms+flip): 48.26
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context_20200911_155322-145d3ee8.pth
- Name: deeplabv3plus_r101-d8_480x480_40k_pascal_context_59
In Collection: deeplabv3plus
Metadata:
backbone: R-101-D8
crop size: (480,480)
lr schd: 40000
Results:
- Task: Semantic Segmentation
Dataset: Pascal Context 59
Metrics:
mIoU: 52.86
mIoU(ms+flip): 54.54
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59_20210416_111233-ed937f15.pth
- Name: deeplabv3plus_r101-d8_480x480_80k_pascal_context_59
In Collection: deeplabv3plus
Metadata:
backbone: R-101-D8
crop size: (480,480)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Pascal Context 59
Metrics:
mIoU: 53.2
mIoU(ms+flip): 54.67
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59_20210416_111127-7ca0331d.pth
- Name: deeplabv3plus_r18-d8_512x512_80k_loveda
In Collection: deeplabv3plus
Metadata:
backbone: R-18-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 39.11
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 1.93
Results:
- Task: Semantic Segmentation
Dataset: LoveDA
Metrics:
mIoU: 50.28
mIoU(ms+flip): 50.47
Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800-ce0fa0ca.pth
- Name: deeplabv3plus_r50-d8_512x512_80k_loveda
In Collection: deeplabv3plus
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 166.67
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 7.37
Results:
- Task: Semantic Segmentation
Dataset: LoveDA
Metrics:
mIoU: 50.99
mIoU(ms+flip): 50.65
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442-f0720392.pth
- Name: deeplabv3plus_r101-d8_512x512_80k_loveda
In Collection: deeplabv3plus
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 230.95
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 10.84
Results:
- Task: Semantic Segmentation
Dataset: LoveDA
Metrics:
mIoU: 51.47
mIoU(ms+flip): 51.32
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759-4c1f297e.pth