129 lines
4.6 KiB
Python
129 lines
4.6 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import os.path as osp
|
|
import warnings
|
|
|
|
import torch.distributed as dist
|
|
from mmcv.runner import DistEvalHook as _DistEvalHook
|
|
from mmcv.runner import EvalHook as _EvalHook
|
|
from torch.nn.modules.batchnorm import _BatchNorm
|
|
|
|
|
|
class EvalHook(_EvalHook):
|
|
"""Single GPU EvalHook, with efficient test support.
|
|
|
|
Args:
|
|
by_epoch (bool): Determine perform evaluation by epoch or by iteration.
|
|
If set to True, it will perform by epoch. Otherwise, by iteration.
|
|
Default: False.
|
|
efficient_test (bool): Whether save the results as local numpy files to
|
|
save CPU memory during evaluation. Default: False.
|
|
pre_eval (bool): Whether to use progressive mode to evaluate model.
|
|
Default: False.
|
|
Returns:
|
|
list: The prediction results.
|
|
"""
|
|
|
|
greater_keys = ['mIoU', 'mAcc', 'aAcc']
|
|
|
|
def __init__(self,
|
|
*args,
|
|
by_epoch=False,
|
|
efficient_test=False,
|
|
pre_eval=False,
|
|
**kwargs):
|
|
super().__init__(*args, by_epoch=by_epoch, **kwargs)
|
|
self.pre_eval = pre_eval
|
|
if efficient_test:
|
|
warnings.warn(
|
|
'DeprecationWarning: ``efficient_test`` for evaluation hook '
|
|
'is deprecated, the evaluation hook is CPU memory friendly '
|
|
'with ``pre_eval=True`` as argument for ``single_gpu_test()`` '
|
|
'function')
|
|
|
|
def _do_evaluate(self, runner):
|
|
"""perform evaluation and save ckpt."""
|
|
if not self._should_evaluate(runner):
|
|
return
|
|
|
|
from mmseg.apis import single_gpu_test
|
|
results = single_gpu_test(
|
|
runner.model, self.dataloader, show=False, pre_eval=self.pre_eval)
|
|
runner.log_buffer.clear()
|
|
runner.log_buffer.output['eval_iter_num'] = len(self.dataloader)
|
|
key_score = self.evaluate(runner, results)
|
|
if self.save_best:
|
|
self._save_ckpt(runner, key_score)
|
|
|
|
|
|
class DistEvalHook(_DistEvalHook):
|
|
"""Distributed EvalHook, with efficient test support.
|
|
|
|
Args:
|
|
by_epoch (bool): Determine perform evaluation by epoch or by iteration.
|
|
If set to True, it will perform by epoch. Otherwise, by iteration.
|
|
Default: False.
|
|
efficient_test (bool): Whether save the results as local numpy files to
|
|
save CPU memory during evaluation. Default: False.
|
|
pre_eval (bool): Whether to use progressive mode to evaluate model.
|
|
Default: False.
|
|
Returns:
|
|
list: The prediction results.
|
|
"""
|
|
|
|
greater_keys = ['mIoU', 'mAcc', 'aAcc']
|
|
|
|
def __init__(self,
|
|
*args,
|
|
by_epoch=False,
|
|
efficient_test=False,
|
|
pre_eval=False,
|
|
**kwargs):
|
|
super().__init__(*args, by_epoch=by_epoch, **kwargs)
|
|
self.pre_eval = pre_eval
|
|
if efficient_test:
|
|
warnings.warn(
|
|
'DeprecationWarning: ``efficient_test`` for evaluation hook '
|
|
'is deprecated, the evaluation hook is CPU memory friendly '
|
|
'with ``pre_eval=True`` as argument for ``multi_gpu_test()`` '
|
|
'function')
|
|
|
|
def _do_evaluate(self, runner):
|
|
"""perform evaluation and save ckpt."""
|
|
# Synchronization of BatchNorm's buffer (running_mean
|
|
# and running_var) is not supported in the DDP of pytorch,
|
|
# which may cause the inconsistent performance of models in
|
|
# different ranks, so we broadcast BatchNorm's buffers
|
|
# of rank 0 to other ranks to avoid this.
|
|
if self.broadcast_bn_buffer:
|
|
model = runner.model
|
|
for name, module in model.named_modules():
|
|
if isinstance(module,
|
|
_BatchNorm) and module.track_running_stats:
|
|
dist.broadcast(module.running_var, 0)
|
|
dist.broadcast(module.running_mean, 0)
|
|
|
|
if not self._should_evaluate(runner):
|
|
return
|
|
|
|
tmpdir = self.tmpdir
|
|
if tmpdir is None:
|
|
tmpdir = osp.join(runner.work_dir, '.eval_hook')
|
|
|
|
from mmseg.apis import multi_gpu_test
|
|
results = multi_gpu_test(
|
|
runner.model,
|
|
self.dataloader,
|
|
tmpdir=tmpdir,
|
|
gpu_collect=self.gpu_collect,
|
|
pre_eval=self.pre_eval)
|
|
|
|
runner.log_buffer.clear()
|
|
|
|
if runner.rank == 0:
|
|
print('\n')
|
|
runner.log_buffer.output['eval_iter_num'] = len(self.dataloader)
|
|
key_score = self.evaluate(runner, results)
|
|
|
|
if self.save_best:
|
|
self._save_ckpt(runner, key_score)
|