46 lines
1.4 KiB
YAML
46 lines
1.4 KiB
YAML
Models:
|
|
- Name: upernet_beit-base_8x2_640x640_160k_ade20k
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: BEiT-B
|
|
crop size: (640,640)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 500.0
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (640,640)
|
|
Training Memory (GB): 15.88
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 53.08
|
|
mIoU(ms+flip): 53.84
|
|
Config: configs/beit/upernet_beit-base_8x2_640x640_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/beit/upernet_beit-base_8x2_640x640_160k_ade20k/upernet_beit-base_8x2_640x640_160k_ade20k-eead221d.pth
|
|
- Name: upernet_beit-large_fp16_8x1_640x640_160k_ade20k
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: BEiT-L
|
|
crop size: (640,640)
|
|
lr schd: 320000
|
|
inference time (ms/im):
|
|
- value: 1041.67
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP16
|
|
resolution: (640,640)
|
|
Training Memory (GB): 22.64
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 56.33
|
|
mIoU(ms+flip): 56.84
|
|
Config: configs/beit/upernet_beit-large_fp16_8x1_640x640_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/beit/upernet_beit-large_fp16_8x1_640x640_160k_ade20k/upernet_beit-large_fp16_8x1_640x640_160k_ade20k-8fc0dd5d.pth
|