OpenMMLab Semantic Segmentation Toolbox and Benchmark.
 
 
 
Go to file
Boyin Zhang 409caf8548
[DEST] add DEST model (#2482)
## Motivation

We are from NVIDIA and we have developed a simplified and
inference-efficient transformer for dense prediction tasks. The method
is based on SegFormer with hardware-friendly design choices, resulting
in better accuracy and over 2x reduction in inference speed as compared
to the baseline. We believe this model would be of particular interests
to those who want to deploy an efficient vision transformer for
production, and it is easily adaptable to other tasks. Therefore, we
would like to contribute our method to mmsegmentation in order to
benefit a larger audience.

The paper was accepted to [Transformer for Vision
workshop](https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fsites.google.com%2Fview%2Ft4v-cvpr22%2Fpapers%3Fauthuser%3D0&data=05%7C01%7Cboyinz%40nvidia.com%7Cbf078d69821449d1f4c908dab5e8c7da%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638022308636438546%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=XtSgPQrbVgHxt5L9XkXF%2BGWvc95haB3kKPcHnsVIF3M%3D&reserved=0)
at CVPR 2022, here below are some resource links:
Paper
[https://arxiv.org/pdf/2204.13791.pdf](https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Farxiv.org%2Fpdf%2F2204.13791.pdf&data=05%7C01%7Cboyinz%40nvidia.com%7Cbf078d69821449d1f4c908dab5e8c7da%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638022308636438546%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=X%2FCVoa6PFA09EHfClES36QOa5NvbZu%2F6IDfBVwiYywU%3D&reserved=0)
(Table 3 shows the semseg results)
Code
[https://github.com/NVIDIA/DL4AGX/tree/master/DEST](https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FNVIDIA%2FDL4AGX%2Ftree%2Fmaster%2FDEST&data=05%7C01%7Cboyinz%40nvidia.com%7Cbf078d69821449d1f4c908dab5e8c7da%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638022308636438546%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=9DLQZpEq1cN75%2FDf%2FniUOOUFS1ABX8FEUH02O6isGVQ%3D&reserved=0)
A webinar on its application
[https://www.nvidia.com/en-us/on-demand/session/other2022-drivetraining/](https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.nvidia.com%2Fen-us%2Fon-demand%2Fsession%2Fother2022-drivetraining%2F&data=05%7C01%7Cboyinz%40nvidia.com%7Cbf078d69821449d1f4c908dab5e8c7da%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638022308636438546%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=8jrBC%2Bp3jGxiaW4vtSfhh6GozC3tRqGNjNoALM%2FOYxs%3D&reserved=0)

## Modification

Add backbone(smit.py) and head(dest_head.py) of DEST

## BC-breaking (Optional)

N/A

## Use cases (Optional)

N/A

---------

Co-authored-by: MeowZheng <meowzheng@outlook.com>
2023-02-16 17:42:34 +08:00
.circleci [Fix]Fix circile ci env (#2467) 2023-01-11 13:59:27 +08:00
.dev add baseline methods for imagenets (#2573) 2023-02-15 21:12:43 +08:00
.github [Projects] Add 'Projects/' folder, and the first example project in 0.x (#2457) 2023-01-11 13:59:27 +08:00
configs add baseline methods for imagenets (#2573) 2023-02-15 21:12:43 +08:00
demo [Fix] Fix no revert_sync_batchnorm in image_demo of master branch (#2489) 2023-01-16 15:40:29 +08:00
docker bump v0.30.0 (#2462) 2023-01-11 17:39:09 +08:00
docs Fix ch-zn doc.md error. (#2567) 2023-02-07 11:51:19 +08:00
mmseg add baseline methods for imagenets (#2573) 2023-02-15 21:12:43 +08:00
projects [DEST] add DEST model (#2482) 2023-02-16 17:42:34 +08:00
requirements [Enhancement] Modify MMCV version requirement (#1764) 2022-07-13 19:40:32 +08:00
resources Add mmseg2torchserve tool (#552) 2021-07-05 21:11:47 +08:00
tests [Fix] Fix `reduce_zero_label` in evaluation (#2504) 2023-01-30 12:01:20 +08:00
tools add baseline methods for imagenets (#2573) 2023-02-15 21:12:43 +08:00
.gitignore [Enhancement] Delete DS_Store file (#1549) 2022-05-04 19:49:23 +08:00
.owners.yml replace owner (#1717) 2022-06-27 19:15:23 +08:00
.pre-commit-config.yaml add baseline methods for imagenets (#2573) 2023-02-15 21:12:43 +08:00
.readthedocs.yml add more format for readthedocs (#742) 2021-07-31 17:05:05 +08:00
CITATION.cff Add MMSeg citation (#825) 2021-09-01 18:38:58 -07:00
LICENSE
LICENSES.md [DEST] add DEST model (#2482) 2023-02-16 17:42:34 +08:00
MANIFEST.in [Feature] support mim (#717) 2021-07-27 15:43:32 +08:00
README.md [DEST] add DEST model (#2482) 2023-02-16 17:42:34 +08:00
README_zh-CN.md add baseline methods for imagenets (#2573) 2023-02-15 21:12:43 +08:00
model-index.yml add baseline methods for imagenets (#2573) 2023-02-15 21:12:43 +08:00
pytest.ini
requirements.txt Add pypi deployment (#11) 2020-07-13 20:54:32 +08:00
setup.cfg Upgrade pre commit hooks master (#2155) 2022-10-08 16:29:12 +08:00
setup.py [Enhancement] .dev Python files updated to get better performance and syntax (#2020) 2022-09-14 16:05:40 +08:00

README.md

English | 简体中文

Introduction

MMSegmentation is an open source semantic segmentation toolbox based on PyTorch. It is a part of the OpenMMLab project.

The master branch works with PyTorch 1.5+.

demo image

Major features
  • Unified Benchmark

    We provide a unified benchmark toolbox for various semantic segmentation methods.

  • Modular Design

    We decompose the semantic segmentation framework into different components and one can easily construct a customized semantic segmentation framework by combining different modules.

  • Support of multiple methods out of box

    The toolbox directly supports popular and contemporary semantic segmentation frameworks, e.g. PSPNet, DeepLabV3, PSANet, DeepLabV3+, etc.

  • High efficiency

    The training speed is faster than or comparable to other codebases.

What's New

💎 Stable version

v0.30.0 was released on 01/11/2023:

  • Add 'Projects/' folder, and the first example project
  • Support Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets

Please refer to changelog.md for details and release history.

🌟 Preview of 1.x version

A brand new version of MMSegmentation v1.0.0rc3 was released in 12/31/2022:

  • Unifies interfaces of all components based on MMEngine.
  • Faster training and testing speed with complete support of mixed precision training.
  • Refactored and more flexible architecture.

Find more new features in 1.x branch. Issues and PRs are welcome!

Installation

Please refer to get_started.md for installation and dataset_prepare.md for dataset preparation.

Get Started

Please see train.md and inference.md for the basic usage of MMSegmentation. There are also tutorials for:

A Colab tutorial is also provided. You may preview the notebook here or directly run on Colab.

Benchmark and model zoo

Results and models are available in the model zoo.

Supported backbones:

Supported methods:

Supported datasets:

FAQ

Please refer to FAQ for frequently asked questions.

Contributing

We appreciate all contributions to improve MMSegmentation. Please refer to CONTRIBUTING.md for the contributing guideline.

Acknowledgement

MMSegmentation is an open source project that welcome any contribution and feedback. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible as well as standardized toolkit to reimplement existing methods and develop their own new semantic segmentation methods.

Citation

If you find this project useful in your research, please consider cite:

@misc{mmseg2020,
    title={{MMSegmentation}: OpenMMLab Semantic Segmentation Toolbox and Benchmark},
    author={MMSegmentation Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmsegmentation}},
    year={2020}
}

License

MMSegmentation is released under the Apache 2.0 license, while some specific features in this library are with other licenses. Please refer to LICENSES.md for the careful check, if you are using our code for commercial matters.

Projects in OpenMMLab

  • MMCV: OpenMMLab foundational library for computer vision.
  • MIM: MIM installs OpenMMLab packages.
  • MMClassification: OpenMMLab image classification toolbox and benchmark.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
  • MMYOLO: OpenMMLab YOLO series toolbox and benchmark.
  • MMRotate: OpenMMLab rotated object detection toolbox and benchmark.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
  • MMOCR: OpenMMLab text detection, recognition, and understanding toolbox.
  • MMPose: OpenMMLab pose estimation toolbox and benchmark.
  • MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
  • MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
  • MMRazor: OpenMMLab model compression toolbox and benchmark.
  • MMFewShot: OpenMMLab fewshot learning toolbox and benchmark.
  • MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
  • MMTracking: OpenMMLab video perception toolbox and benchmark.
  • MMFlow: OpenMMLab optical flow toolbox and benchmark.
  • MMEditing: OpenMMLab image and video editing toolbox.
  • MMGeneration: OpenMMLab image and video generative models toolbox.
  • MMDeploy: OpenMMLab Model Deployment Framework.