mmsegmentation/projects/dest/configs/dest_simpatt-b0.py

38 lines
1.1 KiB
Python

# model settings
embed_dims = [32, 64, 160, 256]
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='EncoderDecoder',
pretrained=None,
backbone=dict(
type='SimplifiedMixTransformer',
in_channels=3,
embed_dims=embed_dims,
num_stages=4,
num_layers=[2, 2, 2, 2],
num_heads=[1, 2, 5, 8],
patch_sizes=[7, 3, 3, 3],
strides=[4, 2, 2, 2],
sr_ratios=[8, 4, 2, 1],
out_indices=(0, 1, 2, 3),
mlp_ratios=[8, 8, 4, 4],
qkv_bias=True,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.1,
norm_cfg=norm_cfg),
decode_head=dict(
type='DESTHead',
in_channels=[32, 64, 160, 256],
in_index=[0, 1, 2, 3],
channels=32,
dropout_ratio=0.1,
num_classes=19,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode='slide', crop_size=(1024, 1024), stride=(768, 768)))