mmsegmentation/tools/confusion_matrix.py

188 lines
6.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import matplotlib.pyplot as plt
import mmcv
import numpy as np
from matplotlib.ticker import MultipleLocator
from mmcv import Config, DictAction
from mmseg.datasets import build_dataset
def parse_args():
parser = argparse.ArgumentParser(
description='Generate confusion matrix from segmentation results')
parser.add_argument('config', help='test config file path')
parser.add_argument(
'prediction_path', help='prediction path where test .pkl result')
parser.add_argument(
'save_dir', help='directory where confusion matrix will be saved')
parser.add_argument(
'--show', action='store_true', help='show confusion matrix')
parser.add_argument(
'--color-theme',
default='winter',
help='theme of the matrix color map')
parser.add_argument(
'--title',
default='Normalized Confusion Matrix',
help='title of the matrix color map')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def calculate_confusion_matrix(dataset, results):
"""Calculate the confusion matrix.
Args:
dataset (Dataset): Test or val dataset.
results (list[ndarray]): A list of segmentation results in each image.
"""
n = len(dataset.CLASSES)
confusion_matrix = np.zeros(shape=[n, n])
assert len(dataset) == len(results)
ignore_index = dataset.ignore_index
prog_bar = mmcv.ProgressBar(len(results))
for idx, per_img_res in enumerate(results):
res_segm = per_img_res
gt_segm = dataset.get_gt_seg_map_by_idx(idx).astype(int)
gt_segm, res_segm = gt_segm.flatten(), res_segm.flatten()
to_ignore = gt_segm == ignore_index
gt_segm, res_segm = gt_segm[~to_ignore], res_segm[~to_ignore]
inds = n * gt_segm + res_segm
mat = np.bincount(inds, minlength=n**2).reshape(n, n)
confusion_matrix += mat
prog_bar.update()
return confusion_matrix
def plot_confusion_matrix(confusion_matrix,
labels,
save_dir=None,
show=True,
title='Normalized Confusion Matrix',
color_theme='winter'):
"""Draw confusion matrix with matplotlib.
Args:
confusion_matrix (ndarray): The confusion matrix.
labels (list[str]): List of class names.
save_dir (str|optional): If set, save the confusion matrix plot to the
given path. Default: None.
show (bool): Whether to show the plot. Default: True.
title (str): Title of the plot. Default: `Normalized Confusion Matrix`.
color_theme (str): Theme of the matrix color map. Default: `winter`.
"""
# normalize the confusion matrix
per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis]
confusion_matrix = \
confusion_matrix.astype(np.float32) / per_label_sums * 100
num_classes = len(labels)
fig, ax = plt.subplots(
figsize=(2 * num_classes, 2 * num_classes * 0.8), dpi=180)
cmap = plt.get_cmap(color_theme)
im = ax.imshow(confusion_matrix, cmap=cmap)
plt.colorbar(mappable=im, ax=ax)
title_font = {'weight': 'bold', 'size': 12}
ax.set_title(title, fontdict=title_font)
label_font = {'size': 10}
plt.ylabel('Ground Truth Label', fontdict=label_font)
plt.xlabel('Prediction Label', fontdict=label_font)
# draw locator
xmajor_locator = MultipleLocator(1)
xminor_locator = MultipleLocator(0.5)
ax.xaxis.set_major_locator(xmajor_locator)
ax.xaxis.set_minor_locator(xminor_locator)
ymajor_locator = MultipleLocator(1)
yminor_locator = MultipleLocator(0.5)
ax.yaxis.set_major_locator(ymajor_locator)
ax.yaxis.set_minor_locator(yminor_locator)
# draw grid
ax.grid(True, which='minor', linestyle='-')
# draw label
ax.set_xticks(np.arange(num_classes))
ax.set_yticks(np.arange(num_classes))
ax.set_xticklabels(labels)
ax.set_yticklabels(labels)
ax.tick_params(
axis='x', bottom=False, top=True, labelbottom=False, labeltop=True)
plt.setp(
ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor')
# draw confusion matrix value
for i in range(num_classes):
for j in range(num_classes):
ax.text(
j,
i,
'{}%'.format(
round(confusion_matrix[i, j], 2
) if not np.isnan(confusion_matrix[i, j]) else -1),
ha='center',
va='center',
color='w',
size=7)
ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) # matplotlib>3.1.1
fig.tight_layout()
if save_dir is not None:
plt.savefig(
os.path.join(save_dir, 'confusion_matrix.png'), format='png')
if show:
plt.show()
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
results = mmcv.load(args.prediction_path)
assert isinstance(results, list)
if isinstance(results[0], np.ndarray):
pass
else:
raise TypeError('invalid type of prediction results')
if isinstance(cfg.data.test, dict):
cfg.data.test.test_mode = True
elif isinstance(cfg.data.test, list):
for ds_cfg in cfg.data.test:
ds_cfg.test_mode = True
dataset = build_dataset(cfg.data.test)
confusion_matrix = calculate_confusion_matrix(dataset, results)
plot_confusion_matrix(
confusion_matrix,
dataset.CLASSES,
save_dir=args.save_dir,
show=args.show,
title=args.title,
color_theme=args.color_theme)
if __name__ == '__main__':
main()