114 lines
4.1 KiB
Python
114 lines
4.1 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os
|
|
import os.path as osp
|
|
import tempfile
|
|
import zipfile
|
|
|
|
import cv2
|
|
import mmcv
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='Convert DRIVE dataset to mmsegmentation format')
|
|
parser.add_argument(
|
|
'training_path', help='the training part of DRIVE dataset')
|
|
parser.add_argument(
|
|
'testing_path', help='the testing part of DRIVE dataset')
|
|
parser.add_argument('--tmp_dir', help='path of the temporary directory')
|
|
parser.add_argument('-o', '--out_dir', help='output path')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
training_path = args.training_path
|
|
testing_path = args.testing_path
|
|
if args.out_dir is None:
|
|
out_dir = osp.join('data', 'DRIVE')
|
|
else:
|
|
out_dir = args.out_dir
|
|
|
|
print('Making directories...')
|
|
mmcv.mkdir_or_exist(out_dir)
|
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images'))
|
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'training'))
|
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'validation'))
|
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations'))
|
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'training'))
|
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation'))
|
|
|
|
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
|
|
print('Extracting training.zip...')
|
|
zip_file = zipfile.ZipFile(training_path)
|
|
zip_file.extractall(tmp_dir)
|
|
|
|
print('Generating training dataset...')
|
|
now_dir = osp.join(tmp_dir, 'training', 'images')
|
|
for img_name in os.listdir(now_dir):
|
|
img = mmcv.imread(osp.join(now_dir, img_name))
|
|
mmcv.imwrite(
|
|
img,
|
|
osp.join(
|
|
out_dir, 'images', 'training',
|
|
osp.splitext(img_name)[0].replace('_training', '') +
|
|
'.png'))
|
|
|
|
now_dir = osp.join(tmp_dir, 'training', '1st_manual')
|
|
for img_name in os.listdir(now_dir):
|
|
cap = cv2.VideoCapture(osp.join(now_dir, img_name))
|
|
ret, img = cap.read()
|
|
mmcv.imwrite(
|
|
img[:, :, 0] // 128,
|
|
osp.join(out_dir, 'annotations', 'training',
|
|
osp.splitext(img_name)[0] + '.png'))
|
|
|
|
print('Extracting test.zip...')
|
|
zip_file = zipfile.ZipFile(testing_path)
|
|
zip_file.extractall(tmp_dir)
|
|
|
|
print('Generating validation dataset...')
|
|
now_dir = osp.join(tmp_dir, 'test', 'images')
|
|
for img_name in os.listdir(now_dir):
|
|
img = mmcv.imread(osp.join(now_dir, img_name))
|
|
mmcv.imwrite(
|
|
img,
|
|
osp.join(
|
|
out_dir, 'images', 'validation',
|
|
osp.splitext(img_name)[0].replace('_test', '') + '.png'))
|
|
|
|
now_dir = osp.join(tmp_dir, 'test', '1st_manual')
|
|
if osp.exists(now_dir):
|
|
for img_name in os.listdir(now_dir):
|
|
cap = cv2.VideoCapture(osp.join(now_dir, img_name))
|
|
ret, img = cap.read()
|
|
# The annotation img should be divided by 128, because some of
|
|
# the annotation imgs are not standard. We should set a
|
|
# threshold to convert the nonstandard annotation imgs. The
|
|
# value divided by 128 is equivalent to '1 if value >= 128
|
|
# else 0'
|
|
mmcv.imwrite(
|
|
img[:, :, 0] // 128,
|
|
osp.join(out_dir, 'annotations', 'validation',
|
|
osp.splitext(img_name)[0] + '.png'))
|
|
|
|
now_dir = osp.join(tmp_dir, 'test', '2nd_manual')
|
|
if osp.exists(now_dir):
|
|
for img_name in os.listdir(now_dir):
|
|
cap = cv2.VideoCapture(osp.join(now_dir, img_name))
|
|
ret, img = cap.read()
|
|
mmcv.imwrite(
|
|
img[:, :, 0] // 128,
|
|
osp.join(out_dir, 'annotations', 'validation',
|
|
osp.splitext(img_name)[0] + '.png'))
|
|
|
|
print('Removing the temporary files...')
|
|
|
|
print('Done!')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|