112 lines
4.3 KiB
Python
112 lines
4.3 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os
|
|
import os.path as osp
|
|
import tempfile
|
|
import zipfile
|
|
|
|
import mmcv
|
|
|
|
HRF_LEN = 15
|
|
TRAINING_LEN = 5
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='Convert HRF dataset to mmsegmentation format')
|
|
parser.add_argument('healthy_path', help='the path of healthy.zip')
|
|
parser.add_argument(
|
|
'healthy_manualsegm_path', help='the path of healthy_manualsegm.zip')
|
|
parser.add_argument('glaucoma_path', help='the path of glaucoma.zip')
|
|
parser.add_argument(
|
|
'glaucoma_manualsegm_path', help='the path of glaucoma_manualsegm.zip')
|
|
parser.add_argument(
|
|
'diabetic_retinopathy_path',
|
|
help='the path of diabetic_retinopathy.zip')
|
|
parser.add_argument(
|
|
'diabetic_retinopathy_manualsegm_path',
|
|
help='the path of diabetic_retinopathy_manualsegm.zip')
|
|
parser.add_argument('--tmp_dir', help='path of the temporary directory')
|
|
parser.add_argument('-o', '--out_dir', help='output path')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
images_path = [
|
|
args.healthy_path, args.glaucoma_path, args.diabetic_retinopathy_path
|
|
]
|
|
annotations_path = [
|
|
args.healthy_manualsegm_path, args.glaucoma_manualsegm_path,
|
|
args.diabetic_retinopathy_manualsegm_path
|
|
]
|
|
if args.out_dir is None:
|
|
out_dir = osp.join('data', 'HRF')
|
|
else:
|
|
out_dir = args.out_dir
|
|
|
|
print('Making directories...')
|
|
mmcv.mkdir_or_exist(out_dir)
|
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images'))
|
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'training'))
|
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'validation'))
|
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations'))
|
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'training'))
|
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation'))
|
|
|
|
print('Generating images...')
|
|
for now_path in images_path:
|
|
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
|
|
zip_file = zipfile.ZipFile(now_path)
|
|
zip_file.extractall(tmp_dir)
|
|
|
|
assert len(os.listdir(tmp_dir)) == HRF_LEN, \
|
|
'len(os.listdir(tmp_dir)) != {}'.format(HRF_LEN)
|
|
|
|
for filename in sorted(os.listdir(tmp_dir))[:TRAINING_LEN]:
|
|
img = mmcv.imread(osp.join(tmp_dir, filename))
|
|
mmcv.imwrite(
|
|
img,
|
|
osp.join(out_dir, 'images', 'training',
|
|
osp.splitext(filename)[0] + '.png'))
|
|
for filename in sorted(os.listdir(tmp_dir))[TRAINING_LEN:]:
|
|
img = mmcv.imread(osp.join(tmp_dir, filename))
|
|
mmcv.imwrite(
|
|
img,
|
|
osp.join(out_dir, 'images', 'validation',
|
|
osp.splitext(filename)[0] + '.png'))
|
|
|
|
print('Generating annotations...')
|
|
for now_path in annotations_path:
|
|
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
|
|
zip_file = zipfile.ZipFile(now_path)
|
|
zip_file.extractall(tmp_dir)
|
|
|
|
assert len(os.listdir(tmp_dir)) == HRF_LEN, \
|
|
'len(os.listdir(tmp_dir)) != {}'.format(HRF_LEN)
|
|
|
|
for filename in sorted(os.listdir(tmp_dir))[:TRAINING_LEN]:
|
|
img = mmcv.imread(osp.join(tmp_dir, filename))
|
|
# The annotation img should be divided by 128, because some of
|
|
# the annotation imgs are not standard. We should set a
|
|
# threshold to convert the nonstandard annotation imgs. The
|
|
# value divided by 128 is equivalent to '1 if value >= 128
|
|
# else 0'
|
|
mmcv.imwrite(
|
|
img[:, :, 0] // 128,
|
|
osp.join(out_dir, 'annotations', 'training',
|
|
osp.splitext(filename)[0] + '.png'))
|
|
for filename in sorted(os.listdir(tmp_dir))[TRAINING_LEN:]:
|
|
img = mmcv.imread(osp.join(tmp_dir, filename))
|
|
mmcv.imwrite(
|
|
img[:, :, 0] // 128,
|
|
osp.join(out_dir, 'annotations', 'validation',
|
|
osp.splitext(filename)[0] + '.png'))
|
|
|
|
print('Done!')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|