124 lines
4.6 KiB
Python
124 lines
4.6 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os.path as osp
|
|
|
|
import mmcv
|
|
import numpy as np
|
|
import torch
|
|
|
|
|
|
def vit_jax_to_torch(jax_weights, num_layer=12):
|
|
torch_weights = dict()
|
|
|
|
# patch embedding
|
|
conv_filters = jax_weights['embedding/kernel']
|
|
conv_filters = conv_filters.permute(3, 2, 0, 1)
|
|
torch_weights['patch_embed.projection.weight'] = conv_filters
|
|
torch_weights['patch_embed.projection.bias'] = jax_weights[
|
|
'embedding/bias']
|
|
|
|
# pos embedding
|
|
torch_weights['pos_embed'] = jax_weights[
|
|
'Transformer/posembed_input/pos_embedding']
|
|
|
|
# cls token
|
|
torch_weights['cls_token'] = jax_weights['cls']
|
|
|
|
# head
|
|
torch_weights['ln1.weight'] = jax_weights['Transformer/encoder_norm/scale']
|
|
torch_weights['ln1.bias'] = jax_weights['Transformer/encoder_norm/bias']
|
|
|
|
# transformer blocks
|
|
for i in range(num_layer):
|
|
jax_block = f'Transformer/encoderblock_{i}'
|
|
torch_block = f'layers.{i}'
|
|
|
|
# attention norm
|
|
torch_weights[f'{torch_block}.ln1.weight'] = jax_weights[
|
|
f'{jax_block}/LayerNorm_0/scale']
|
|
torch_weights[f'{torch_block}.ln1.bias'] = jax_weights[
|
|
f'{jax_block}/LayerNorm_0/bias']
|
|
|
|
# attention
|
|
query_weight = jax_weights[
|
|
f'{jax_block}/MultiHeadDotProductAttention_1/query/kernel']
|
|
query_bias = jax_weights[
|
|
f'{jax_block}/MultiHeadDotProductAttention_1/query/bias']
|
|
key_weight = jax_weights[
|
|
f'{jax_block}/MultiHeadDotProductAttention_1/key/kernel']
|
|
key_bias = jax_weights[
|
|
f'{jax_block}/MultiHeadDotProductAttention_1/key/bias']
|
|
value_weight = jax_weights[
|
|
f'{jax_block}/MultiHeadDotProductAttention_1/value/kernel']
|
|
value_bias = jax_weights[
|
|
f'{jax_block}/MultiHeadDotProductAttention_1/value/bias']
|
|
|
|
qkv_weight = torch.from_numpy(
|
|
np.stack((query_weight, key_weight, value_weight), 1))
|
|
qkv_weight = torch.flatten(qkv_weight, start_dim=1)
|
|
qkv_bias = torch.from_numpy(
|
|
np.stack((query_bias, key_bias, value_bias), 0))
|
|
qkv_bias = torch.flatten(qkv_bias, start_dim=0)
|
|
|
|
torch_weights[f'{torch_block}.attn.attn.in_proj_weight'] = qkv_weight
|
|
torch_weights[f'{torch_block}.attn.attn.in_proj_bias'] = qkv_bias
|
|
to_out_weight = jax_weights[
|
|
f'{jax_block}/MultiHeadDotProductAttention_1/out/kernel']
|
|
to_out_weight = torch.flatten(to_out_weight, start_dim=0, end_dim=1)
|
|
torch_weights[
|
|
f'{torch_block}.attn.attn.out_proj.weight'] = to_out_weight
|
|
torch_weights[f'{torch_block}.attn.attn.out_proj.bias'] = jax_weights[
|
|
f'{jax_block}/MultiHeadDotProductAttention_1/out/bias']
|
|
|
|
# mlp norm
|
|
torch_weights[f'{torch_block}.ln2.weight'] = jax_weights[
|
|
f'{jax_block}/LayerNorm_2/scale']
|
|
torch_weights[f'{torch_block}.ln2.bias'] = jax_weights[
|
|
f'{jax_block}/LayerNorm_2/bias']
|
|
|
|
# mlp
|
|
torch_weights[f'{torch_block}.ffn.layers.0.0.weight'] = jax_weights[
|
|
f'{jax_block}/MlpBlock_3/Dense_0/kernel']
|
|
torch_weights[f'{torch_block}.ffn.layers.0.0.bias'] = jax_weights[
|
|
f'{jax_block}/MlpBlock_3/Dense_0/bias']
|
|
torch_weights[f'{torch_block}.ffn.layers.1.weight'] = jax_weights[
|
|
f'{jax_block}/MlpBlock_3/Dense_1/kernel']
|
|
torch_weights[f'{torch_block}.ffn.layers.1.bias'] = jax_weights[
|
|
f'{jax_block}/MlpBlock_3/Dense_1/bias']
|
|
|
|
# transpose weights
|
|
for k, v in torch_weights.items():
|
|
if 'weight' in k and 'patch_embed' not in k and 'ln' not in k:
|
|
v = v.permute(1, 0)
|
|
torch_weights[k] = v
|
|
|
|
return torch_weights
|
|
|
|
|
|
def main():
|
|
# stole refactoring code from Robin Strudel, thanks
|
|
parser = argparse.ArgumentParser(
|
|
description='Convert keys from jax official pretrained vit models to '
|
|
'MMSegmentation style.')
|
|
parser.add_argument('src', help='src model path or url')
|
|
# The dst path must be a full path of the new checkpoint.
|
|
parser.add_argument('dst', help='save path')
|
|
args = parser.parse_args()
|
|
|
|
jax_weights = np.load(args.src)
|
|
jax_weights_tensor = {}
|
|
for key in jax_weights.files:
|
|
value = torch.from_numpy(jax_weights[key])
|
|
jax_weights_tensor[key] = value
|
|
if 'L_16-i21k' in args.src:
|
|
num_layer = 24
|
|
else:
|
|
num_layer = 12
|
|
torch_weights = vit_jax_to_torch(jax_weights_tensor, num_layer)
|
|
mmcv.mkdir_or_exist(osp.dirname(args.dst))
|
|
torch.save(torch_weights, args.dst)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|